deeplearning-with-tensorflow-notes 的安装和配置教程
2025-05-18 01:23:26作者:胡易黎Nicole
1. 项目的基础介绍和主要的编程语言
deeplearning-with-tensorflow-notes 是一个开源项目,基于 TensorFlow 2.0.0 版本,提供了《TensorFlow深度学习》一书中所述的练习代码和学习笔记。该项目由龙曲良(龙龙老师)编写,主要涵盖了 TensorFlow 和 Keras 的基础知识、核心理论以及深度学习模型的应用。项目的主要编程语言是 Python,辅以 Jupyter Notebook 用于编写和展示代码。
2. 项目使用的关键技术和框架
项目使用了以下关键技术和框架:
- TensorFlow: 一个由 Google 开发并维护的开源机器学习框架,用于构建和训练各种深度学习模型。
- Keras: 一个高级神经网络API,它能够以TensorFlow、CNTK或Theano作为后端运行。
- Jupyter Notebook: 一个开源的Web应用程序,允许你创建和共享包含代码、方程、可视化和解释性文本的文档。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保你的系统中已经安装了以下软件:
- Python (建议版本 3.6 或更高)
- pip (Python 包管理工具)
- Git (用于克隆和更新项目代码)
安装步骤
步骤1:克隆项目到本地
打开命令行工具(如终端或命令提示符),使用以下命令克隆项目:
git clone https://github.com/Relph1119/deeplearning-with-tensorflow-notes.git
cd deeplearning-with-tensorflow-notes
步骤2:安装所需的 Python 包
在项目目录中,使用以下命令安装项目所需的 Python 包:
pip install -r requirements.txt
该命令会根据 requirements.txt 文件中列出的包及其版本,自动安装所有依赖项。
步骤3:配置 TensorFlow 环境
根据你的操作系统和硬件配置,你可能需要安装适合你的 TensorFlow 版本(CPU版或GPU版)。如果你已经安装了 TensorFlow,请确保版本至少为 2.0.0。
步骤4:运行示例代码
安装完成后,你可以进入任意一个包含 .ipynb 文件的目录,使用 Jupyter Notebook 打开并运行示例代码:
jupyter notebook
在浏览器中打开 Jupyter Notebook 服务器,选择你想要运行的 .ipynb 文件,然后开始执行代码。
注意事项
- 如果你的电脑显卡显存不足,可能会遇到内存不足的错误。在这种情况下,你可以考虑使用 Google Colab 来运行代码。
- 如果你在安装过程中遇到任何问题,请检查项目README文件中的说明,或者搜索相关错误信息以获取解决方案。
以上就是 deeplearning-with-tensorflow-notes 项目的安装和配置教程,按照上述步骤操作,你就可以开始学习和实践 TensorFlow 深度学习了。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355