deeplearning-with-tensorflow-notes 的安装和配置教程
2025-05-18 09:22:28作者:胡易黎Nicole
1. 项目的基础介绍和主要的编程语言
deeplearning-with-tensorflow-notes 是一个开源项目,基于 TensorFlow 2.0.0 版本,提供了《TensorFlow深度学习》一书中所述的练习代码和学习笔记。该项目由龙曲良(龙龙老师)编写,主要涵盖了 TensorFlow 和 Keras 的基础知识、核心理论以及深度学习模型的应用。项目的主要编程语言是 Python,辅以 Jupyter Notebook 用于编写和展示代码。
2. 项目使用的关键技术和框架
项目使用了以下关键技术和框架:
- TensorFlow: 一个由 Google 开发并维护的开源机器学习框架,用于构建和训练各种深度学习模型。
- Keras: 一个高级神经网络API,它能够以TensorFlow、CNTK或Theano作为后端运行。
- Jupyter Notebook: 一个开源的Web应用程序,允许你创建和共享包含代码、方程、可视化和解释性文本的文档。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保你的系统中已经安装了以下软件:
- Python (建议版本 3.6 或更高)
- pip (Python 包管理工具)
- Git (用于克隆和更新项目代码)
安装步骤
步骤1:克隆项目到本地
打开命令行工具(如终端或命令提示符),使用以下命令克隆项目:
git clone https://github.com/Relph1119/deeplearning-with-tensorflow-notes.git
cd deeplearning-with-tensorflow-notes
步骤2:安装所需的 Python 包
在项目目录中,使用以下命令安装项目所需的 Python 包:
pip install -r requirements.txt
该命令会根据 requirements.txt 文件中列出的包及其版本,自动安装所有依赖项。
步骤3:配置 TensorFlow 环境
根据你的操作系统和硬件配置,你可能需要安装适合你的 TensorFlow 版本(CPU版或GPU版)。如果你已经安装了 TensorFlow,请确保版本至少为 2.0.0。
步骤4:运行示例代码
安装完成后,你可以进入任意一个包含 .ipynb 文件的目录,使用 Jupyter Notebook 打开并运行示例代码:
jupyter notebook
在浏览器中打开 Jupyter Notebook 服务器,选择你想要运行的 .ipynb 文件,然后开始执行代码。
注意事项
- 如果你的电脑显卡显存不足,可能会遇到内存不足的错误。在这种情况下,你可以考虑使用 Google Colab 来运行代码。
- 如果你在安装过程中遇到任何问题,请检查项目README文件中的说明,或者搜索相关错误信息以获取解决方案。
以上就是 deeplearning-with-tensorflow-notes 项目的安装和配置教程,按照上述步骤操作,你就可以开始学习和实践 TensorFlow 深度学习了。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K