PJProject中强制设置AMR编解码器Payload Type的技术方案
背景介绍
在基于PJSUA2开发SIP客户端时,开发者有时会遇到需要强制指定特定编解码器(如AMR)的Payload Type(PT)值的情况。这种情况通常出现在与某些特殊配置的SIP服务器(如Asterisk)进行互操作时,这些服务器可能要求使用固定的PT值而非动态协商的值。
问题分析
PJSIP默认采用动态Payload Type分配机制,这意味着每次会话协商时,编解码器的PT值可能会变化。虽然PJSUA2提供了CodecParam结构体来配置编解码器参数,但直接通过codecSetParam()方法设置的PT值(info.pt字段)实际上会被系统忽略,系统仍会使用动态分配的PT值。
解决方案
方法一:使用onCallSdpCreated回调修改SDP
PJSUA2提供了onCallSdpCreated回调函数,允许开发者在SDP创建完成后、发送前对其进行修改。这是目前最可靠的强制设置PT值的方法。
void MyCall::onCallSdpCreated(OnCallSdpCreatedParam &prm) {
pjmedia_sdp_session *s = (pjmedia_sdp_session *)prm.sdp.pjSdpSession;
pjmedia_sdp_media *m = s->media[s->media_count-1];
// 查找AMR相关的属性
pjmedia_sdp_attr *amr_attr1 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "rtpmap", &m->desc.fmt[1]);
amr_attr1->value = {strdup("114 AMR/8000"),12};
pjmedia_sdp_attr *amr_attr2 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "fmtp", &m->desc.fmt[1]);
amr_attr2->value = {strdup("114 octet-align=1"),17};
// 修改媒体描述中的PT值
m->desc.fmt[1] = {strdup("114"),3};
}
方法二:使用transport_encode_sdp回调
另一种方法是通过transport_encode_sdp回调来修改SDP,这种方法同样有效,但相比onCallSdpCreated,它是在更底层进行操作。
技术细节
-
Payload Type的作用:在RTP协议中,PT字段用于标识负载的媒体类型和编码格式。标准PT值(0-95)有预定义含义,而动态PT值(96-127)用于动态协商。
-
AMR编解码器特性:AMR通常配置为8000Hz采样率、单声道,支持octet-align模式。在SDP中,除了PT值外,还需要正确设置rtpmap和fmtp参数。
-
内存管理注意事项:在修改SDP时,需要注意字符串内存的分配和释放,避免内存泄漏。
最佳实践建议
-
优先使用
onCallSdpCreated回调而非更底层的transport_encode_sdp,因为前者提供了更高层次的抽象。 -
修改SDP时,确保同时更新所有相关字段(PT值、rtpmap、fmtp等),保持一致性。
-
在生产环境中,应该添加错误处理逻辑,检查属性是否存在等边界条件。
-
考虑到内存管理,可以使用智能指针或其他RAII技术来管理动态分配的字符串。
总结
虽然PJSIP默认使用动态Payload Type分配机制,但通过合理使用回调函数,开发者可以强制指定特定编解码器的PT值。这种方法在与特殊配置的SIP服务器互操作时特别有用。需要注意的是,这种修改应该在充分理解SDP协议和RTP负载类型的基础上进行,以确保会话建立的可靠性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00