PJProject中强制设置AMR编解码器Payload Type的技术方案
背景介绍
在基于PJSUA2开发SIP客户端时,开发者有时会遇到需要强制指定特定编解码器(如AMR)的Payload Type(PT)值的情况。这种情况通常出现在与某些特殊配置的SIP服务器(如Asterisk)进行互操作时,这些服务器可能要求使用固定的PT值而非动态协商的值。
问题分析
PJSIP默认采用动态Payload Type分配机制,这意味着每次会话协商时,编解码器的PT值可能会变化。虽然PJSUA2提供了CodecParam结构体来配置编解码器参数,但直接通过codecSetParam()方法设置的PT值(info.pt字段)实际上会被系统忽略,系统仍会使用动态分配的PT值。
解决方案
方法一:使用onCallSdpCreated回调修改SDP
PJSUA2提供了onCallSdpCreated回调函数,允许开发者在SDP创建完成后、发送前对其进行修改。这是目前最可靠的强制设置PT值的方法。
void MyCall::onCallSdpCreated(OnCallSdpCreatedParam &prm) {
pjmedia_sdp_session *s = (pjmedia_sdp_session *)prm.sdp.pjSdpSession;
pjmedia_sdp_media *m = s->media[s->media_count-1];
// 查找AMR相关的属性
pjmedia_sdp_attr *amr_attr1 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "rtpmap", &m->desc.fmt[1]);
amr_attr1->value = {strdup("114 AMR/8000"),12};
pjmedia_sdp_attr *amr_attr2 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "fmtp", &m->desc.fmt[1]);
amr_attr2->value = {strdup("114 octet-align=1"),17};
// 修改媒体描述中的PT值
m->desc.fmt[1] = {strdup("114"),3};
}
方法二:使用transport_encode_sdp回调
另一种方法是通过transport_encode_sdp回调来修改SDP,这种方法同样有效,但相比onCallSdpCreated,它是在更底层进行操作。
技术细节
-
Payload Type的作用:在RTP协议中,PT字段用于标识负载的媒体类型和编码格式。标准PT值(0-95)有预定义含义,而动态PT值(96-127)用于动态协商。
-
AMR编解码器特性:AMR通常配置为8000Hz采样率、单声道,支持octet-align模式。在SDP中,除了PT值外,还需要正确设置rtpmap和fmtp参数。
-
内存管理注意事项:在修改SDP时,需要注意字符串内存的分配和释放,避免内存泄漏。
最佳实践建议
-
优先使用
onCallSdpCreated回调而非更底层的transport_encode_sdp,因为前者提供了更高层次的抽象。 -
修改SDP时,确保同时更新所有相关字段(PT值、rtpmap、fmtp等),保持一致性。
-
在生产环境中,应该添加错误处理逻辑,检查属性是否存在等边界条件。
-
考虑到内存管理,可以使用智能指针或其他RAII技术来管理动态分配的字符串。
总结
虽然PJSIP默认使用动态Payload Type分配机制,但通过合理使用回调函数,开发者可以强制指定特定编解码器的PT值。这种方法在与特殊配置的SIP服务器互操作时特别有用。需要注意的是,这种修改应该在充分理解SDP协议和RTP负载类型的基础上进行,以确保会话建立的可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00