PJProject中强制设置AMR编解码器Payload Type的技术方案
背景介绍
在基于PJSUA2开发SIP客户端时,开发者有时会遇到需要强制指定特定编解码器(如AMR)的Payload Type(PT)值的情况。这种情况通常出现在与某些特殊配置的SIP服务器(如Asterisk)进行互操作时,这些服务器可能要求使用固定的PT值而非动态协商的值。
问题分析
PJSIP默认采用动态Payload Type分配机制,这意味着每次会话协商时,编解码器的PT值可能会变化。虽然PJSUA2提供了CodecParam结构体来配置编解码器参数,但直接通过codecSetParam()方法设置的PT值(info.pt字段)实际上会被系统忽略,系统仍会使用动态分配的PT值。
解决方案
方法一:使用onCallSdpCreated回调修改SDP
PJSUA2提供了onCallSdpCreated回调函数,允许开发者在SDP创建完成后、发送前对其进行修改。这是目前最可靠的强制设置PT值的方法。
void MyCall::onCallSdpCreated(OnCallSdpCreatedParam &prm) {
pjmedia_sdp_session *s = (pjmedia_sdp_session *)prm.sdp.pjSdpSession;
pjmedia_sdp_media *m = s->media[s->media_count-1];
// 查找AMR相关的属性
pjmedia_sdp_attr *amr_attr1 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "rtpmap", &m->desc.fmt[1]);
amr_attr1->value = {strdup("114 AMR/8000"),12};
pjmedia_sdp_attr *amr_attr2 = pjmedia_sdp_attr_find2(m->attr_count, m->attr, "fmtp", &m->desc.fmt[1]);
amr_attr2->value = {strdup("114 octet-align=1"),17};
// 修改媒体描述中的PT值
m->desc.fmt[1] = {strdup("114"),3};
}
方法二:使用transport_encode_sdp回调
另一种方法是通过transport_encode_sdp回调来修改SDP,这种方法同样有效,但相比onCallSdpCreated,它是在更底层进行操作。
技术细节
-
Payload Type的作用:在RTP协议中,PT字段用于标识负载的媒体类型和编码格式。标准PT值(0-95)有预定义含义,而动态PT值(96-127)用于动态协商。
-
AMR编解码器特性:AMR通常配置为8000Hz采样率、单声道,支持octet-align模式。在SDP中,除了PT值外,还需要正确设置rtpmap和fmtp参数。
-
内存管理注意事项:在修改SDP时,需要注意字符串内存的分配和释放,避免内存泄漏。
最佳实践建议
-
优先使用
onCallSdpCreated回调而非更底层的transport_encode_sdp,因为前者提供了更高层次的抽象。 -
修改SDP时,确保同时更新所有相关字段(PT值、rtpmap、fmtp等),保持一致性。
-
在生产环境中,应该添加错误处理逻辑,检查属性是否存在等边界条件。
-
考虑到内存管理,可以使用智能指针或其他RAII技术来管理动态分配的字符串。
总结
虽然PJSIP默认使用动态Payload Type分配机制,但通过合理使用回调函数,开发者可以强制指定特定编解码器的PT值。这种方法在与特殊配置的SIP服务器互操作时特别有用。需要注意的是,这种修改应该在充分理解SDP协议和RTP负载类型的基础上进行,以确保会话建立的可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00