Elastic Detection Rules项目中的Azure AD异常令牌检测规则解析
背景与威胁场景
在云身份认证安全领域,Microsoft Entra ID(原Azure AD)的认证机制一直是攻击者重点研究的对象。近期安全研究人员发现了一种新型攻击手法:攻击者通过钓鱼获取授权码后,利用Microsoft Authentication Broker(MAB)客户端向Azure设备注册服务(ADRS)发起带有adrs_access作用域的刷新令牌请求,试图实现持久化访问。
技术原理分析
这种攻击的核心在于滥用OAuth 2.0的刷新令牌机制和ADRS服务特性。攻击者首先通过钓鱼获取用户的授权码,然后将其兑换为访问令牌和刷新令牌。随后,攻击者使用这些令牌通过Microsoft Authentication Broker(客户端ID:29d9ed98-a469-4536-ade2-f981bc1d605e)向ADRS服务(资源ID:01cb2876-7ebd-4aa4-9cc9-d28bd4d359a9)发起请求,请求中包含特殊的adrs_access作用域。
ADRS(设备注册服务)是Azure中用于管理设备注册和加入的功能组件。攻击者获取adrs_access权限后,可以执行设备注册操作,为后续持久化访问创造条件。
检测规则详解
Elastic Detection Rules项目中提出的检测规则采用KQL语法,主要检测以下几个关键特征:
-
数据源限定:专门筛选azure.signinlogs数据集,聚焦Azure AD登录日志
-
客户端标识:匹配Microsoft Authentication Broker的标准客户端ID
-
目标服务:限定为ADRS服务的资源ID
-
认证类型:筛选非交互式登录(NonInteractiveUserSignInLogs),这是使用刷新令牌的典型特征
-
作用域检测:检查认证处理详情中是否包含adrs_access特殊作用域
-
令牌类型确认:明确要求令牌类型为refreshToken
-
用户类型过滤:仅关注常规成员账户,排除访客账户
安全意义与响应建议
这类检测规则的价值在于能够发现潜在的OAuth滥用行为。在正常业务场景中,普通用户很少会直接使用刷新令牌访问ADRS服务,特别是带有adrs_access作用域的请求更是罕见。
安全团队在发现此类告警后,建议采取以下响应措施:
-
立即审查相关用户账户的活动历史,确认是否存在异常登录
-
检查目标租户中的设备注册记录,确认是否有可疑设备被加入
-
必要时撤销相关用户的会话和刷新令牌
-
对受影响用户进行安全意识教育,防范钓鱼攻击
规则优化方向
在实际部署中,可以考虑以下优化:
-
增加频率检测:短时间内多次此类请求更可疑
-
结合地理位置:来自异常地区的请求风险更高
-
关联设备信息:检查请求是否来自用户常用设备
-
添加白名单机制:排除已知的服务账号
通过持续优化这类检测规则,企业可以更好地防御基于OAuth的复杂攻击,保护云身份安全。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00