探索未知,尽在Ghidralligator

Ghidralligator 是一个基于C++的多架构Pcode模拟器,利用了Ghidra的libsla库,专为使用AFL++进行模糊测试而设计。它能高效处理运行于各类罕见架构上的二进制文件的模糊测试,使您无需担心性能问题。
项目简介
Ghidralligator旨在填补现有模拟器与“黑盒”模拟器之间的空白。前者需要大量的设置和手动修改,而后者则不易扩展并不适合特定或非主流应用。它的主要目标是针对闭源二进制代码,特别是用于嵌入式设备应用程序或固件的安全研究,这些通常运行在各种不常见的架构上。
作为afl_ghidra_emu的升级版,Ghidralligator在执行速度和功能方面有了显著提升,如集成asan以检测内存溢出等问题。
项目技术分析
Ghidralligator的核心在于其可扩展性。用户只需编写相应的Sleigh规范文件,就能轻松模拟几乎任何架构。它支持两种模式:replay(仅启动一次程序)和fuzz(通过AFL进行模糊测试)。此外,还提供了配置文件来定义内存映射布局和初始程序状态,并允许用户自定义钩子(hooks),以适应特定需求。
应用场景
- 漏洞研究:对于无法获取源码的二进制文件,Ghidralligator可以帮助发现潜在的漏洞。
- 嵌入式设备安全:可以对运行在如RISC-V、MIPS等非主流架构上的固件进行安全性评估。
- 软件兼容性测试:验证二进制文件在不同硬件平台下的行为一致性。
项目特点
- 多架构支持:通过Sleigh规范文件,轻松覆盖多种处理器架构。
- 高性能:即使在模拟罕见架构时,仍能保持良好的运行效率。
- asan集成:内置地址空间布局随机化(ASAN),可自动检测内存错误。
- 易扩展:灵活的配置文件和钩子系统,使得定制化测试变得简单。
- 与AFL++无缝集成:直接支持AFL++的模糊测试框架,简化工作流程。
开始你的旅程
要开始使用Ghidralligator,首先确保你的Linux系统安装了GCC 17或更高版本。然后按照项目中的说明克隆并安装AFL++,接着编译Ghidralligator及其内含的依赖项。你可以从官方Ghidra仓库下载已有的.sla文件,或者自己创建。
运行示例脚本run_examples.sh可以快速体验其功能,并查看ASAN如何捕获异常行为。为了模糊测试,只需将-m fuzz选项添加到命令行中,配合AFL++即可。
# 演示模式运行
$ ./ghidralligator -m replay -c examples/x86/config.json -I -i examples/x86/input/normal_use_case.bin
# 使用AFL++进行模糊测试
$ AFL_SKIP_BIN_CHECK=1 afl-fuzz -D -i ./afl_inputs -o ./afl_outputs/ -- ./ghidralligator -m fuzz -c examples/x86/config.json
了解更多详细信息,请查阅项目文档,包括配置文件和用户钩子的写作指南。
最后的话
Ghidralligator是一个强大的工具,适用于那些渴望深入探究二进制代码秘密的技术爱好者和安全研究员。由于它是开源项目,我们欢迎所有有兴趣的开发者贡献自己的力量,共同推动其发展。现在就加入我们,一起探索未知的软件世界吧!
项目许可证:Apache许可协议2.0版。
依赖项目许可证:
- Ghidra 由NationalSecurityAgency发布,遵循Apache 许可协议2.0。
- JSON库 由nlohmann,遵循MIT许可。
- xxHash库 由Cyan4973,遵循BSD 2-Clause许可。
作者
- Flavian Dola - Airbus Cybersecurity (Twitter)
- Guillaume Orlando - Airbus Cybersecurity (Twitter)
不要犹豫,马上尝试Ghidralligator吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00