Backtesting.py中订单被自动删除的原因分析与解决方案
2025-06-03 13:23:08作者:翟江哲Frasier
问题背景
在使用Backtesting.py进行策略回测时,许多开发者可能会遇到一个令人困惑的现象:设置的止损/限价订单在价格达到触发水平时,订单会被自动删除而没有给出任何错误提示。这种情况通常发生在使用动态仓位大小时,当订单规模超过可用资金时,系统会静默地删除这些订单。
技术原理分析
Backtesting.py内部处理订单时,会进行以下关键计算:
- 当订单大小以比例形式指定时(即size参数在-1到1之间),系统会根据可用保证金和杠杆计算实际交易单位数量
- 计算公式为:
实际大小 = 符号函数 × 整数部分(可用保证金 × 杠杆 × 绝对值(size) / 调整后价格加佣金) - 如果计算结果为零(即资金不足以交易最小单位),系统会直接删除该订单
这种设计模拟了真实交易中经纪商拒绝订单的行为,但缺乏必要的反馈机制,导致开发者难以诊断问题。
解决方案实现
为了改善这一情况,我们可以通过修改Backtesting.py的源代码来添加警告信息。具体实现如下:
# 在订单处理逻辑中添加警告信息
size = order.size
if -1 < size < 1:
size = copysign(int((self.margin_available * self._leverage * abs(size))
// adjusted_price_plus_commission), size)
if not size:
print(f'警告:由于保证金不足,订单已被移除')
self.orders.remove(order)
continue
这个修改会在订单因资金不足被删除时输出明确的警告信息,帮助开发者快速定位问题。
最佳实践建议
- 资金管理策略:在使用动态仓位大小时,应确保策略中包含合理的资金管理逻辑,避免因资金不足导致订单被删除
- 日志记录:建议将警告信息记录到日志文件中,便于后续分析
- 预检查机制:在策略中可以添加资金充足性检查,提前避免无效订单的产生
- 回测验证:在策略开发阶段,应特别关注订单执行情况,确保所有预期订单都能正常执行
总结
Backtesting.py作为一款强大的回测框架,其订单处理机制设计合理但反馈不足。通过添加简单的警告信息,可以显著改善开发体验,帮助开发者更快地发现和解决策略中的资金管理问题。理解框架的内部工作机制对于开发稳健的交易策略至关重要,特别是在处理动态仓位大小和复杂订单类型时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135