PEFT项目:如何修改已加载LoRA模型的modules_to_save配置
2025-05-12 12:57:17作者:裘旻烁
在基于PEFT(Parameter-Efficient Fine-Tuning)框架进行模型微调时,开发者经常会遇到需要修改已训练LoRA模型配置的情况。本文将以Whisper模型为例,深入探讨如何安全有效地调整已加载LoRA模型的modules_to_save参数设置。
背景与问题场景
当使用LoRA技术微调Whisper模型后,开发者可能需要对模型架构进行扩展,例如添加新的网络层。此时,需要将这些新增层纳入modules_to_save配置中,以确保它们的参数能够被正确保存到adapter_model.safetensors文件中。
常见误区是尝试在模型加载后直接修改peft_config中的modules_to_save属性,这种做法实际上不会生效,因为模型参数结构在加载时就已经确定。
解决方案详解
方法一:直接修改配置文件
最直接的方式是手动编辑checkpoint目录下的adapter_config.json文件:
- 定位到保存的LoRA模型checkpoint目录
- 打开adapter_config.json文件
- 在modules_to_save数组中添加需要保存的新层名称
- 保存修改后的配置文件
- 正常加载模型
这种方法简单直接,适合快速实验和调试场景。
方法二:编程式配置修改(推荐)
更规范的解决方案是通过代码流程实现:
- 首先加载PeftConfig
peft_config = PeftConfig.from_pretrained(checkpoint_path)
- 修改配置对象的modules_to_save属性
peft_config.modules_to_save.extend(["new_layer1", "new_layer2"])
- 使用修改后的配置加载模型
model = PeftModel.from_pretrained(base_model, checkpoint_path, config=peft_config)
这种方法更具可编程性,适合集成到自动化训练流程中。
技术原理深入
PEFT框架在加载LoRA模型时,会根据配置中的modules_to_save参数决定哪些层需要被特殊处理。这些层会被标记为可训练参数,并且它们的状态会被单独保存。如果在模型加载完成后才修改配置,框架无法重新初始化这些层的参数处理逻辑。
最佳实践建议
- 在模型架构变更时,优先考虑通过配置修改而非事后调整
- 对于生产环境,推荐使用方法二的编程式配置
- 修改配置后,建议进行完整性检查,确认新增层已被正确纳入训练
- 对于复杂架构变更,考虑创建全新的配置而非修改现有配置
通过遵循这些实践,开发者可以更灵活地利用PEFT框架进行模型微调和扩展,同时保证训练过程的稳定性和可复现性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
520

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
181
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78