Microsoft.Extensions.AI 项目中结构化输出与函数调用的技术解析
在人工智能应用开发领域,结构化输出与函数调用是提升模型响应质量和可靠性的重要技术。Microsoft.Extensions.AI 项目作为.NET生态中AI应用开发的基础设施,近期针对OpenAI的结构化输出功能进行了技术讨论和实现优化。
结构化输出的核心价值
结构化输出功能确保AI模型在函数调用时能够严格遵循开发者提供的参数模式。传统模式下,模型可能会在复杂模式中出现参数遗漏或类型错误的情况。通过启用结构化输出,开发者可以获得与预定模式完全匹配的响应结果,这对于构建企业级可靠应用至关重要。
技术实现方案
在Microsoft.Extensions.AI项目中,开发者可以通过两种方式启用结构化输出:
-
属性标记法:在类型定义上使用
[JsonUnmappedMemberHandling(JsonUnmappedMemberHandling.Disallow)]注解,这会指示JSON序列化器拒绝任何未映射的成员,相当于设置了additionalProperties: false。 -
配置选项法:通过
AIFunctionFactory.Create方法创建函数时,在AdditionalProperties字典中添加{"Strict", true}键值对,这将激活严格模式。
当前的技术挑战
项目实现中发现了一些需要优化的技术点:
-
模式兼容性问题:当参数类型为decimal、double或float时,自动生成的模式中包含的"pattern"属性不被OpenAI支持。
-
完整性要求:OpenAI要求所有属性必须标记为
required,且必须显式设置additionalProperties: false,而当前生成器未完全满足这些要求。
未来优化方向
开发团队计划对AI模式生成器进行以下改进:
-
智能模式生成:根据目标AI供应商的规范自动调整生成的模式文档。
-
默认严格模式:考虑将严格模式作为默认选项,提高开发者体验。
-
类型处理优化:特别处理数值类型的模式生成,避免使用不支持的"pattern"属性。
开发者实践建议
对于当前版本,开发者可以采取以下最佳实践:
-
优先使用整数类型而非浮点类型作为参数,避免模式兼容性问题。
-
显式使用
[JsonUnmappedMemberHandling]注解确保模式完整性。 -
密切关注项目更新,未来版本将提供更完善的模式生成支持。
通过理解这些技术细节,.NET开发者可以更有效地利用Microsoft.Extensions.AI构建可靠、高质量的AI应用,充分发挥结构化输出在提升模型响应准确性方面的优势。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00