开源项目 `distilling-step-by-step` 使用教程
2024-08-26 21:44:52作者:瞿蔚英Wynne
1. 项目的目录结构及介绍
distilling-step-by-step/
├── README.md
├── setup.py
├── requirements.txt
├── data/
│ ├── train.csv
│ ├── dev.csv
│ └── test.csv
├── models/
│ ├── __init__.py
│ ├── model.py
│ └── trainer.py
├── configs/
│ ├── default_config.yaml
│ └── custom_config.yaml
├── scripts/
│ ├── train.py
│ ├── evaluate.py
│ └── predict.py
└── notebooks/
├── analysis.ipynb
└── visualization.ipynb
目录结构介绍
README.md
: 项目介绍和使用说明。setup.py
: 项目安装脚本。requirements.txt
: 项目依赖包列表。data/
: 存放训练、验证和测试数据。models/
: 包含模型定义和训练脚本。configs/
: 配置文件,包括默认配置和自定义配置。scripts/
: 包含训练、评估和预测脚本。notebooks/
: 包含数据分析和可视化笔记本。
2. 项目的启动文件介绍
scripts/train.py
该文件是项目的启动文件,用于训练模型。使用方法如下:
python scripts/train.py --config configs/default_config.yaml
参数说明
--config
: 指定配置文件路径,默认为configs/default_config.yaml
。
3. 项目的配置文件介绍
configs/default_config.yaml
该文件是项目的默认配置文件,包含模型训练所需的各种参数。
model:
name: "distilling_model"
hidden_size: 256
num_layers: 4
dropout: 0.2
train:
batch_size: 32
epochs: 10
learning_rate: 0.001
data:
train_path: "data/train.csv"
dev_path: "data/dev.csv"
test_path: "data/test.csv"
配置项说明
model
: 模型相关配置,包括模型名称、隐藏层大小、层数和 dropout 比例。train
: 训练相关配置,包括批次大小、训练轮数和学习率。data
: 数据路径配置,包括训练、验证和测试数据路径。
以上是 distilling-step-by-step
开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5