Agenta项目中JSON差异评估器的零除问题分析与修复
问题背景
在Agenta项目的后端服务中,开发团队实现了一个用于比较JSON数据的差异评估器(auto_json_diff)。该评估器的主要功能是对比预测结果与标准答案之间的JSON结构差异,并计算相似度分数。然而,在实际使用过程中,评估器在某些情况下会抛出"float division by zero"的异常,导致评估过程失败。
问题现象
当评估器处理以下JSON数据时出现了异常:
标准答案(ground truth):
{
"CCI_edits": ["CCI 1", "CCI 3"],
"E_M": "99214",
"HCC": ["HCC19", "HCC59"],
"ICD_10": ["I10", "E11.9", "Z87.891"],
"CPT_HCPCS": ["99213", "96372", "85610", "84443"]
}
预测结果(prediction):
{
"CCI_edits": [],
"E_M": "99214",
"HCC": ["HCC3", "HCC19"],
"ICD_10": ["J45.909", "E11.9", "I10", "Z79.84"],
"CPT_HCPCS": ["99214", "94640", "99213", "85018"]
}
评估器配置使用了默认参数:
{
"predict_keys": false,
"correct_answer_key": "correct_answer",
"compare_schema_only": false,
"case_insensitive_keys": false
}
问题分析
通过查看错误堆栈,问题发生在计算平均分数时:
average_score = cumulated_score / no_of_keys
这里出现了零除错误,说明no_of_keys
变量在某些情况下可能为零。深入分析评估器逻辑,发现当配置中predict_keys
参数为false时,评估器会忽略预测结果中的键,仅使用标准答案中的键进行比较。然而,在某些边缘情况下,标准答案可能为空或评估器未能正确识别有效键,导致键计数为零。
解决方案
修复此问题需要考虑以下几个方面:
-
输入验证:在计算分数前,应验证输入JSON的有效性,确保至少存在一个有效键。
-
默认值处理:当键计数为零时,应提供合理的默认值或明确的错误提示,而不是直接进行除法运算。
-
配置参数检查:确保评估器配置参数能够正确处理各种边界情况。
-
错误处理机制:实现健壮的错误处理,为开发者提供清晰的错误信息,便于问题定位。
技术实现
修复后的代码应该包含以下改进:
def compare_jsons(ground_truth, prediction, config):
# 验证输入JSON非空
if not ground_truth or not isinstance(ground_truth, dict):
raise ValueError("无效的标准答案JSON")
# 获取要比较的键集合
if config.get("predict_keys", False):
keys = set(prediction.keys()) if prediction else set()
else:
keys = set(ground_truth.keys())
# 处理无有效键的情况
if not keys:
return 0.0 # 或者根据业务需求返回特定值/抛出异常
# 正常比较逻辑
cumulated_score = 0.0
for key in keys:
# 键比较和值比较逻辑
...
# 计算平均分数
return cumulated_score / len(keys)
经验总结
-
边界条件处理:在开发数据处理组件时,必须充分考虑各种边界条件,特别是当输入数据可能为空或结构异常时。
-
防御性编程:关键计算步骤前应添加必要的验证逻辑,防止运行时错误。
-
配置参数影响:评估器的行为高度依赖配置参数,需要仔细考虑每个参数可能带来的影响。
-
错误信息友好性:当问题发生时,应提供足够的信息帮助用户理解问题原因,而不仅仅是抛出技术性异常。
这个问题提醒我们在开发数据比较工具时,需要全面考虑各种可能的输入情况,并实现相应的保护机制,确保系统的健壮性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









