Amazon EKS AMI 中预拉取容器镜像的实践与优化
2025-06-30 00:46:47作者:冯梦姬Eddie
前言
在 Amazon EKS 环境中,容器镜像的拉取时间往往成为影响应用启动速度的关键因素。特别是对于大型机器学习镜像,每次节点扩容时都需要重新拉取镜像,这显著增加了应用响应时间。本文将探讨如何在 Amazon EKS AMI 中预拉取容器镜像的实践方法及其优化效果。
技术背景
Amazon EKS 使用 containerd 作为容器运行时,其镜像存储在特定的命名空间中。默认情况下,Kubernetes 使用 k8s.io 命名空间来管理容器镜像。通过 Amazon EC2 Image Builder,我们可以在 AMI 构建阶段预先拉取所需的容器镜像,从而减少节点启动后的镜像拉取时间。
实现方案
1. Image Builder 模板设计
通过创建自定义的 Image Builder 模板,在 AMI 构建阶段执行容器镜像的预拉取操作。以下是关键步骤的实现:
name: ml-image-pull
description: 预拉取机器学习容器镜像
schemaVersion: 1.0
phases:
- name: build
steps:
- name: pull-ml-image
action: ExecuteBash
inputs:
commands:
- password=$(aws ecr get-login-password --region us-west-2)
- sudo ctr --namespace k8s.io images pull --user AWS:$password account_id.dkr.ecr.us-west-2.amazonaws.com/ml-image:latest > /dev/null
- sudo ctr --namespace k8s.io images list | grep ml-image
2. 关键参数说明
--namespace k8s.io:确保镜像被拉取到 Kubernetes 使用的 containerd 命名空间--user AWS:$password:提供 ECR 认证信息- 输出重定向:避免构建日志过大
3. 验证阶段
在测试阶段验证镜像是否成功预拉取:
- name: test
steps:
- name: confirm-ml-image-pulled
action: ExecuteBash
inputs:
commands:
- set -e
- sudo ctr --namespace k8s.io images list | grep ml-image
实践中的发现与优化
1. imagePullPolicy 的影响
预拉取的镜像能否被 Kubernetes 直接使用取决于 Pod 的 imagePullPolicy 设置:
- 当设置为
Always时,Kubelet 会忽略本地已存在的镜像,强制重新拉取 - 设置为
IfNotPresent时,Kubelet 会优先使用本地镜像
2. 性能考量
在实际测试中发现以下现象:
- 节点启动时间:使用预拉取镜像的 AMI 启动的节点比标准 AMI 慢约一倍
- 文件系统缓存:首次访问预拉取镜像中的文件时性能较差,后续访问恢复正常
3. 优化建议
- 权衡预拉取与启动时间:评估预拉取大镜像带来的启动时间增加是否值得
- 文件系统预热:考虑在 AMI 构建后执行文件系统预热操作
- 镜像标签策略:使用固定版本标签而非
latest,确保一致性
总结
在 Amazon EKS 环境中预拉取容器镜像可以显著减少应用启动时间,特别是对于大型镜像场景。然而,这一优化需要综合考虑多方面因素:
- 正确设置
imagePullPolicy - 评估预拉取对节点启动时间的影响
- 关注文件系统缓存行为
通过合理的配置和测试,这一技术可以成为优化 EKS 集群性能的有效手段之一,特别是在需要频繁扩容或使用大型容器镜像的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355