Amazon EKS AMI 中预拉取容器镜像的实践与优化
2025-06-30 00:46:47作者:冯梦姬Eddie
前言
在 Amazon EKS 环境中,容器镜像的拉取时间往往成为影响应用启动速度的关键因素。特别是对于大型机器学习镜像,每次节点扩容时都需要重新拉取镜像,这显著增加了应用响应时间。本文将探讨如何在 Amazon EKS AMI 中预拉取容器镜像的实践方法及其优化效果。
技术背景
Amazon EKS 使用 containerd 作为容器运行时,其镜像存储在特定的命名空间中。默认情况下,Kubernetes 使用 k8s.io 命名空间来管理容器镜像。通过 Amazon EC2 Image Builder,我们可以在 AMI 构建阶段预先拉取所需的容器镜像,从而减少节点启动后的镜像拉取时间。
实现方案
1. Image Builder 模板设计
通过创建自定义的 Image Builder 模板,在 AMI 构建阶段执行容器镜像的预拉取操作。以下是关键步骤的实现:
name: ml-image-pull
description: 预拉取机器学习容器镜像
schemaVersion: 1.0
phases:
- name: build
steps:
- name: pull-ml-image
action: ExecuteBash
inputs:
commands:
- password=$(aws ecr get-login-password --region us-west-2)
- sudo ctr --namespace k8s.io images pull --user AWS:$password account_id.dkr.ecr.us-west-2.amazonaws.com/ml-image:latest > /dev/null
- sudo ctr --namespace k8s.io images list | grep ml-image
2. 关键参数说明
--namespace k8s.io:确保镜像被拉取到 Kubernetes 使用的 containerd 命名空间--user AWS:$password:提供 ECR 认证信息- 输出重定向:避免构建日志过大
3. 验证阶段
在测试阶段验证镜像是否成功预拉取:
- name: test
steps:
- name: confirm-ml-image-pulled
action: ExecuteBash
inputs:
commands:
- set -e
- sudo ctr --namespace k8s.io images list | grep ml-image
实践中的发现与优化
1. imagePullPolicy 的影响
预拉取的镜像能否被 Kubernetes 直接使用取决于 Pod 的 imagePullPolicy 设置:
- 当设置为
Always时,Kubelet 会忽略本地已存在的镜像,强制重新拉取 - 设置为
IfNotPresent时,Kubelet 会优先使用本地镜像
2. 性能考量
在实际测试中发现以下现象:
- 节点启动时间:使用预拉取镜像的 AMI 启动的节点比标准 AMI 慢约一倍
- 文件系统缓存:首次访问预拉取镜像中的文件时性能较差,后续访问恢复正常
3. 优化建议
- 权衡预拉取与启动时间:评估预拉取大镜像带来的启动时间增加是否值得
- 文件系统预热:考虑在 AMI 构建后执行文件系统预热操作
- 镜像标签策略:使用固定版本标签而非
latest,确保一致性
总结
在 Amazon EKS 环境中预拉取容器镜像可以显著减少应用启动时间,特别是对于大型镜像场景。然而,这一优化需要综合考虑多方面因素:
- 正确设置
imagePullPolicy - 评估预拉取对节点启动时间的影响
- 关注文件系统缓存行为
通过合理的配置和测试,这一技术可以成为优化 EKS 集群性能的有效手段之一,特别是在需要频繁扩容或使用大型容器镜像的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19