Optax项目中的扰动函数梯度计算问题分析与修复
2025-07-07 08:17:40作者:廉彬冶Miranda
在深度学习优化库Optax中,make_perturbed_fun函数是一个用于创建带有随机扰动的目标函数的实用工具。这个函数的设计初衷是通过在输入参数上添加随机噪声来帮助优化算法探索参数空间,同时提供该扰动函数的梯度估计。
问题背景
当使用make_perturbed_fun包装恒等函数(identity function)并添加正态分布噪声时,理论上应该得到以下数学特性:
- 扰动后的函数值应该是原始输入的无偏估计
- 该函数的雅可比矩阵(梯度)应该是单位矩阵的无偏估计
然而,实际测试表明梯度计算结果存在明显偏差。具体表现为:
- 当σ=0.1时,梯度估计约为0.087-0.100,而非预期的1.0
- 当σ=0.5时,梯度估计约为0.488-0.502,而非预期的1.0
- 对于多维输入,雅可比矩阵对角线元素也显示出与σ值相关的偏差
这表明梯度计算中存在一个与噪声标准差σ成比例的缩放问题。
技术分析
从数学角度看,对于一个函数f(x) = x,添加正态噪声后的扰动函数应为:
f_perturbed(x) = x + σ·ε,其中ε ~ N(0,1)
该函数的期望值E[f_perturbed(x)] = x,确实保持了无偏性。然而,其梯度应为:
∇f_perturbed(x) = 1 + σ·∇ε
但由于ε与x独立,∇ε=0,因此理论上梯度应为1。实际实现中出现的σ比例偏差表明在梯度计算过程中可能错误地保留了σ因子。
解决方案
修复此问题需要仔细检查扰动函数的实现,特别是梯度计算部分。关键点包括:
- 确保噪声生成过程正确实现
- 验证自动微分过程是否正确处理了噪声项
- 检查梯度计算中是否意外引入了额外的σ因子
通过修正梯度计算中的缩放因子,可以确保扰动函数不仅提供无偏的函数值估计,还能提供正确的梯度信息。这对于依赖梯度信息的优化算法(如SGD、Adam等)至关重要。
实际意义
这一修复确保了:
- 基于扰动的优化方法(如进化策略)能正确工作
- 随机平滑技术能提供准确的梯度估计
- 使用该函数的各种应用场景能得到预期的优化行为
对于深度学习实践者来说,理解这类底层实现的细节有助于更好地使用和调试优化算法,特别是在涉及随机扰动或噪声注入的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K