OSHI项目在Mac OS X上因签名问题导致JNA库加载失败的解决方案
问题背景
在使用OSHI 6.6.1版本获取Mac OS X系统硬件信息时,开发人员遇到了两个关键错误:java.lang.UnsatisfiedLinkError和java.lang.NoClassDefFoundError。这些错误发生在尝试获取CPU ID和主板序列号时,根本原因是JNA(Java Native Access)库的本地二进制文件未能正确加载。
错误分析
错误现象
-
CPU ID获取失败:当调用
hal.getProcessor().getProcessorIdentifier().getProcessorID()方法时,系统抛出UnsatisfiedLinkError异常,提示JNA临时文件未签名。 -
主板序列号获取失败:当调用
hal.getComputerSystem().getSerialNumber()方法时,系统抛出NoClassDefFoundError异常,表明无法初始化com.sun.jna.Native类。
根本原因
Mac OS X系统(特别是较新版本)对加载的本地库有严格的签名要求。错误信息明确指出:
/Users/user03/Library/Caches/JNA/temp/jna6226492912741182982.tmp not valid for use in process: mapped file has no cdhash, completely unsigned? Code has to be at least ad-hoc signed.
这表明JNA在运行时生成的临时本地库文件未被签名,而Mac OS X要求所有加载的本地代码至少要有ad-hoc签名。
解决方案
方案一:预签名JNA库
-
获取JNA本地库:从JNA项目中获取对应平台的本地库文件(如libjnidispatch.jnilib)
-
签名本地库:使用Mac开发者证书对库文件进行签名:
codesign -f -s "证书名称" libjnidispatch.jnilib -
指定库位置:在应用程序中设置系统属性,告诉JNA使用预签名的库:
System.setProperty("jna.nosys", "true"); System.setProperty("jna.library.path", "/path/to/signed/libs");
方案二:使用ad-hoc签名
对于不需要正式发布到App Store的应用程序,可以使用ad-hoc签名:
codesign -f -s - libjnidispatch.jnilib
方案三:调整JNA缓存策略
配置JNA使用固定位置的库文件而非临时文件:
System.setProperty("jna.tmpdir", "/path/to/persistent/directory");
最佳实践建议
-
开发环境:在开发阶段,建议使用方案二的ad-hoc签名方式,简化开发流程。
-
生产环境:对于正式发布的应用程序,应采用方案一,使用正式开发者证书签名。
-
版本兼容性:确保使用的JNA版本与OSHI版本兼容,避免因版本不匹配导致的其他问题。
-
错误处理:在代码中添加适当的错误处理逻辑,当硬件信息获取失败时提供合理的默认值或降级方案。
技术原理深入
Mac OS X从10.15 Catalina开始引入了更严格的库签名验证机制,称为"Hardened Runtime"。这种机制要求:
- 所有可执行文件和库必须包含有效的代码签名
- 即使是临时文件也需要至少ad-hoc签名
- 系统会验证加载的代码是否来自可信来源
JNA作为Java调用本地代码的桥梁,其核心功能依赖于本地库(jnidispatch)。当这个库未签名时,Mac OS X的安全机制会阻止其加载,导致上述错误。
总结
在Mac OS X上使用OSHI项目获取硬件信息时,签名问题是常见的障碍。通过理解Mac系统的安全机制并采取适当的签名策略,可以确保JNA库正常加载,从而使OSHI的各项功能正常工作。开发人员应根据实际应用场景选择合适的签名方案,并在代码中做好错误处理,以提供更健壮的系统信息获取功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00