使用NEMOS进行钙成像数据分析教程
2025-06-18 18:48:53作者:虞亚竹Luna
前言
本教程将介绍如何使用NEMOS工具包对钙成像数据进行建模分析。钙成像技术是现代神经科学研究中的重要手段,能够记录大量神经元的活动情况。我们将通过一个实际案例,展示如何建立Gamma-GLM模型来分析小鼠后下托(head-direction)神经元的钙信号。
数据准备
数据来源
我们使用的数据集来自自由活动小鼠的1光子钙成像记录,采样频率为30Hz,使用GCaMP6f钙指示剂。记录区域为后下托(postsubiculum),该区域包含头部方向细胞(head-direction cells)。
数据加载与初步处理
首先,我们需要加载NWB格式的数据文件:
import nemos as nmo
import pynapple as nap
# 加载数据文件
path = nmo.fetch.fetch_data("A0670-221213.nwb")
data = nap.load_file(path)
数据探索
数据中包含多个字段,我们主要关注RoiResponseSeries
字段,它包含了钙信号时间序列:
transients = data['RoiResponseSeries']
print(transients.time_support) # 显示记录时长
我们可以可视化部分神经元的原始钙信号:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
ax[0].plot(transients[:, 4].get(0,250))
ax[0].set_title("神经元4")
ax[1].plot(transients[:, 35].get(0,250))
ax[1].set_title("神经元35")
plt.tight_layout()
数据预处理
时间降采样
为了减少计算复杂度,我们将数据从30Hz降采样到10Hz:
Y = transients.bin_average(0.1, ep) # 100ms时间窗平均
头部方向调谐曲线
我们可以计算神经元的头部方向调谐曲线:
tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120)
模型构建
基函数选择
我们使用两种基函数的组合:
- 循环B样条基(Cyclic BSpline)用于编码头部方向
- 对数间隔的升余弦基(Raised Cosine)用于神经元间的耦合关系
heading_basis = nmo.basis.CyclicBSplineEval(n_basis_funcs=12, label="heading")
coupling_basis = nmo.basis.RaisedCosineLogConv(3, window_size=10, label="coupling")
basis = heading_basis + coupling_basis
Gamma-GLM模型
由于钙信号是非负连续值,我们选择Gamma分布作为观测模型,并使用softplus作为链接函数:
model = nmo.glm.GLM(
regularizer="Ridge",
regularizer_strength=0.02,
observation_model=nmo.observation_models.GammaObservations(
inverse_link_function=jax.nn.softplus
)
)
模型训练与评估
数据划分
我们将数据分为训练集和测试集:
train_ep = nap.IntervalSet(start=X.time_support.start, end=X.time_support.get_intervals_center().t)
test_ep = X.time_support.set_diff(train_ep)
Xtrain = X.restrict(train_ep)
Ytrain = Y.restrict(train_ep)
Xtest = X.restrict(test_ep)
Ytest = Y.restrict(test_ep)
模型训练
选择目标神经元进行训练:
neu = 4
selected_neurons = jnp.hstack((jnp.arange(0, neu), jnp.arange(neu+1, Y.shape[1])))
model.fit(Xtrain, Ytrain[:, neu])
与传统线性回归比较
我们与scikit-learn的线性回归模型进行对比:
from sklearn.linear_model import LinearRegression
mdl = LinearRegression()
valid = ~jnp.isnan(Xtrain.d.sum(axis=1))
mdl.fit(Xtrain[valid], Ytrain[valid, neu])
结果分析
预测效果可视化
比较三种预测结果:
yp = model.predict(Xtest)
ylreg = nap.Tsd(t=yp.t, d=mdl.predict(Xtest), time_support=yp.time_support)
plt.figure()
plt.plot(Ytest[:,neu].restrict(ep_to_plot), "r", label="真实值")
plt.plot(yp.restrict(ep_to_plot), "k", label="Gamma-GLM")
plt.plot(ylreg.restrict(ep_to_plot), "g", label="线性回归")
plt.legend()
plt.show()
调谐曲线比较
计算并比较不同模型的调谐曲线:
real_tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120, ep=test_ep)
gamma_tcurves = nap.compute_1d_tuning_curves_continuous(yp, data['ry'], 120, ep=test_ep)
linreg_tcurves = nap.compute_1d_tuning_curves_continuous(ylreg, data['ry'], 120, ep=test_ep)
plt.figure()
plt.plot(real_tcurves[neu], "r", label="真实值")
plt.plot(gamma_tcurves, "k", label="Gamma-GLM")
plt.plot(linreg_tcurves, "g", label="线性回归")
plt.legend()
plt.show()
技术要点总结
- 数据特性处理:钙信号是非负连续值,Gamma分布比高斯分布更合适
- 基函数选择:循环基函数适合周期性变量(如头部方向),升余弦基适合描述神经元间耦合
- 模型比较:Gamma-GLM能保证预测值非负,更符合生理实际
- 正则化:使用Ridge正则化防止过拟合
应用前景与局限
虽然Gamma-GLM在钙成像数据分析中显示出潜力,但这一方法仍处于探索阶段。未来研究可以关注:
- 不同链接函数的比较
- 更复杂的耦合关系建模
- 与其他去卷积方法的结合
本教程展示了NEMOS在钙成像数据分析中的应用,为神经科学研究提供了新的建模思路。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

Ascend Extension for PyTorch
Python
75
106

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401