使用NEMOS进行钙成像数据分析教程
2025-06-18 09:39:12作者:虞亚竹Luna
前言
本教程将介绍如何使用NEMOS工具包对钙成像数据进行建模分析。钙成像技术是现代神经科学研究中的重要手段,能够记录大量神经元的活动情况。我们将通过一个实际案例,展示如何建立Gamma-GLM模型来分析小鼠后下托(head-direction)神经元的钙信号。
数据准备
数据来源
我们使用的数据集来自自由活动小鼠的1光子钙成像记录,采样频率为30Hz,使用GCaMP6f钙指示剂。记录区域为后下托(postsubiculum),该区域包含头部方向细胞(head-direction cells)。
数据加载与初步处理
首先,我们需要加载NWB格式的数据文件:
import nemos as nmo
import pynapple as nap
# 加载数据文件
path = nmo.fetch.fetch_data("A0670-221213.nwb")
data = nap.load_file(path)
数据探索
数据中包含多个字段,我们主要关注RoiResponseSeries字段,它包含了钙信号时间序列:
transients = data['RoiResponseSeries']
print(transients.time_support) # 显示记录时长
我们可以可视化部分神经元的原始钙信号:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
ax[0].plot(transients[:, 4].get(0,250))
ax[0].set_title("神经元4")
ax[1].plot(transients[:, 35].get(0,250))
ax[1].set_title("神经元35")
plt.tight_layout()
数据预处理
时间降采样
为了减少计算复杂度,我们将数据从30Hz降采样到10Hz:
Y = transients.bin_average(0.1, ep) # 100ms时间窗平均
头部方向调谐曲线
我们可以计算神经元的头部方向调谐曲线:
tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120)
模型构建
基函数选择
我们使用两种基函数的组合:
- 循环B样条基(Cyclic BSpline)用于编码头部方向
- 对数间隔的升余弦基(Raised Cosine)用于神经元间的耦合关系
heading_basis = nmo.basis.CyclicBSplineEval(n_basis_funcs=12, label="heading")
coupling_basis = nmo.basis.RaisedCosineLogConv(3, window_size=10, label="coupling")
basis = heading_basis + coupling_basis
Gamma-GLM模型
由于钙信号是非负连续值,我们选择Gamma分布作为观测模型,并使用softplus作为链接函数:
model = nmo.glm.GLM(
regularizer="Ridge",
regularizer_strength=0.02,
observation_model=nmo.observation_models.GammaObservations(
inverse_link_function=jax.nn.softplus
)
)
模型训练与评估
数据划分
我们将数据分为训练集和测试集:
train_ep = nap.IntervalSet(start=X.time_support.start, end=X.time_support.get_intervals_center().t)
test_ep = X.time_support.set_diff(train_ep)
Xtrain = X.restrict(train_ep)
Ytrain = Y.restrict(train_ep)
Xtest = X.restrict(test_ep)
Ytest = Y.restrict(test_ep)
模型训练
选择目标神经元进行训练:
neu = 4
selected_neurons = jnp.hstack((jnp.arange(0, neu), jnp.arange(neu+1, Y.shape[1])))
model.fit(Xtrain, Ytrain[:, neu])
与传统线性回归比较
我们与scikit-learn的线性回归模型进行对比:
from sklearn.linear_model import LinearRegression
mdl = LinearRegression()
valid = ~jnp.isnan(Xtrain.d.sum(axis=1))
mdl.fit(Xtrain[valid], Ytrain[valid, neu])
结果分析
预测效果可视化
比较三种预测结果:
yp = model.predict(Xtest)
ylreg = nap.Tsd(t=yp.t, d=mdl.predict(Xtest), time_support=yp.time_support)
plt.figure()
plt.plot(Ytest[:,neu].restrict(ep_to_plot), "r", label="真实值")
plt.plot(yp.restrict(ep_to_plot), "k", label="Gamma-GLM")
plt.plot(ylreg.restrict(ep_to_plot), "g", label="线性回归")
plt.legend()
plt.show()
调谐曲线比较
计算并比较不同模型的调谐曲线:
real_tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120, ep=test_ep)
gamma_tcurves = nap.compute_1d_tuning_curves_continuous(yp, data['ry'], 120, ep=test_ep)
linreg_tcurves = nap.compute_1d_tuning_curves_continuous(ylreg, data['ry'], 120, ep=test_ep)
plt.figure()
plt.plot(real_tcurves[neu], "r", label="真实值")
plt.plot(gamma_tcurves, "k", label="Gamma-GLM")
plt.plot(linreg_tcurves, "g", label="线性回归")
plt.legend()
plt.show()
技术要点总结
- 数据特性处理:钙信号是非负连续值,Gamma分布比高斯分布更合适
- 基函数选择:循环基函数适合周期性变量(如头部方向),升余弦基适合描述神经元间耦合
- 模型比较:Gamma-GLM能保证预测值非负,更符合生理实际
- 正则化:使用Ridge正则化防止过拟合
应用前景与局限
虽然Gamma-GLM在钙成像数据分析中显示出潜力,但这一方法仍处于探索阶段。未来研究可以关注:
- 不同链接函数的比较
- 更复杂的耦合关系建模
- 与其他去卷积方法的结合
本教程展示了NEMOS在钙成像数据分析中的应用,为神经科学研究提供了新的建模思路。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19