使用NEMOS进行钙成像数据分析教程
2025-06-18 10:05:29作者:虞亚竹Luna
前言
本教程将介绍如何使用NEMOS工具包对钙成像数据进行建模分析。钙成像技术是现代神经科学研究中的重要手段,能够记录大量神经元的活动情况。我们将通过一个实际案例,展示如何建立Gamma-GLM模型来分析小鼠后下托(head-direction)神经元的钙信号。
数据准备
数据来源
我们使用的数据集来自自由活动小鼠的1光子钙成像记录,采样频率为30Hz,使用GCaMP6f钙指示剂。记录区域为后下托(postsubiculum),该区域包含头部方向细胞(head-direction cells)。
数据加载与初步处理
首先,我们需要加载NWB格式的数据文件:
import nemos as nmo
import pynapple as nap
# 加载数据文件
path = nmo.fetch.fetch_data("A0670-221213.nwb")
data = nap.load_file(path)
数据探索
数据中包含多个字段,我们主要关注RoiResponseSeries字段,它包含了钙信号时间序列:
transients = data['RoiResponseSeries']
print(transients.time_support) # 显示记录时长
我们可以可视化部分神经元的原始钙信号:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
ax[0].plot(transients[:, 4].get(0,250))
ax[0].set_title("神经元4")
ax[1].plot(transients[:, 35].get(0,250))
ax[1].set_title("神经元35")
plt.tight_layout()
数据预处理
时间降采样
为了减少计算复杂度,我们将数据从30Hz降采样到10Hz:
Y = transients.bin_average(0.1, ep) # 100ms时间窗平均
头部方向调谐曲线
我们可以计算神经元的头部方向调谐曲线:
tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120)
模型构建
基函数选择
我们使用两种基函数的组合:
- 循环B样条基(Cyclic BSpline)用于编码头部方向
- 对数间隔的升余弦基(Raised Cosine)用于神经元间的耦合关系
heading_basis = nmo.basis.CyclicBSplineEval(n_basis_funcs=12, label="heading")
coupling_basis = nmo.basis.RaisedCosineLogConv(3, window_size=10, label="coupling")
basis = heading_basis + coupling_basis
Gamma-GLM模型
由于钙信号是非负连续值,我们选择Gamma分布作为观测模型,并使用softplus作为链接函数:
model = nmo.glm.GLM(
regularizer="Ridge",
regularizer_strength=0.02,
observation_model=nmo.observation_models.GammaObservations(
inverse_link_function=jax.nn.softplus
)
)
模型训练与评估
数据划分
我们将数据分为训练集和测试集:
train_ep = nap.IntervalSet(start=X.time_support.start, end=X.time_support.get_intervals_center().t)
test_ep = X.time_support.set_diff(train_ep)
Xtrain = X.restrict(train_ep)
Ytrain = Y.restrict(train_ep)
Xtest = X.restrict(test_ep)
Ytest = Y.restrict(test_ep)
模型训练
选择目标神经元进行训练:
neu = 4
selected_neurons = jnp.hstack((jnp.arange(0, neu), jnp.arange(neu+1, Y.shape[1])))
model.fit(Xtrain, Ytrain[:, neu])
与传统线性回归比较
我们与scikit-learn的线性回归模型进行对比:
from sklearn.linear_model import LinearRegression
mdl = LinearRegression()
valid = ~jnp.isnan(Xtrain.d.sum(axis=1))
mdl.fit(Xtrain[valid], Ytrain[valid, neu])
结果分析
预测效果可视化
比较三种预测结果:
yp = model.predict(Xtest)
ylreg = nap.Tsd(t=yp.t, d=mdl.predict(Xtest), time_support=yp.time_support)
plt.figure()
plt.plot(Ytest[:,neu].restrict(ep_to_plot), "r", label="真实值")
plt.plot(yp.restrict(ep_to_plot), "k", label="Gamma-GLM")
plt.plot(ylreg.restrict(ep_to_plot), "g", label="线性回归")
plt.legend()
plt.show()
调谐曲线比较
计算并比较不同模型的调谐曲线:
real_tcurves = nap.compute_1d_tuning_curves_continuous(transients, data['ry'], 120, ep=test_ep)
gamma_tcurves = nap.compute_1d_tuning_curves_continuous(yp, data['ry'], 120, ep=test_ep)
linreg_tcurves = nap.compute_1d_tuning_curves_continuous(ylreg, data['ry'], 120, ep=test_ep)
plt.figure()
plt.plot(real_tcurves[neu], "r", label="真实值")
plt.plot(gamma_tcurves, "k", label="Gamma-GLM")
plt.plot(linreg_tcurves, "g", label="线性回归")
plt.legend()
plt.show()
技术要点总结
- 数据特性处理:钙信号是非负连续值,Gamma分布比高斯分布更合适
- 基函数选择:循环基函数适合周期性变量(如头部方向),升余弦基适合描述神经元间耦合
- 模型比较:Gamma-GLM能保证预测值非负,更符合生理实际
- 正则化:使用Ridge正则化防止过拟合
应用前景与局限
虽然Gamma-GLM在钙成像数据分析中显示出潜力,但这一方法仍处于探索阶段。未来研究可以关注:
- 不同链接函数的比较
- 更复杂的耦合关系建模
- 与其他去卷积方法的结合
本教程展示了NEMOS在钙成像数据分析中的应用,为神经科学研究提供了新的建模思路。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347