Trieve项目中实现多场景AI提示分离的技术方案
2025-07-04 00:36:06作者:翟江哲Frasier
在AI驱动的搜索和对话系统中,上下文管理是决定响应质量的关键因素。Trieve项目最近面临一个重要的技术挑战:如何让AI系统能够针对不同场景(全局组件和产品详情页PDP)提供差异化的响应。
问题背景
当前Trieve系统的AI组件使用统一的提示模板(System和RAG提示)来处理所有类型的查询。这种设计存在明显局限:当用户在产品详情页(PDP)发起查询时,系统无法识别这是与特定产品相关的上下文,导致响应缺乏针对性。同样,全局搜索场景下的查询也无法获得最优化的回答。
技术挑战
实现多场景提示分离看似简单,实则涉及系统架构的多方面考量:
- 上下文识别机制:系统需要准确判断当前查询是来自全局搜索还是PDP页面
- 提示管理架构:需要设计可扩展的提示存储和检索机制
- 性能考量:新增的提示切换逻辑不能显著影响响应速度
- 维护性:需要确保不同场景的提示能够独立更新而不互相干扰
解决方案
Trieve团队采用了分层提示管理架构来解决这一问题:
1. 上下文识别层
系统通过请求元数据自动识别查询来源:
- 包含特定产品ID的请求被路由到PDP提示流程
- 其他请求使用全局提示流程
2. 提示存储层
数据库schema扩展为:
CREATE TABLE ai_prompts (
id UUID PRIMARY KEY,
scenario VARCHAR(50) NOT NULL, -- 'global' or 'pdp'
prompt_type VARCHAR(20) NOT NULL, -- 'system' or 'rag'
content TEXT NOT NULL,
created_at TIMESTAMP,
updated_at TIMESTAMP
);
3. 执行引擎优化
查询处理流程重构为:
- 解析请求,确定场景
- 加载对应场景的System和RAG提示
- 将提示与用户查询组合后发送给AI模型
- 返回响应
实现细节
提示优先级机制
系统实现了提示的级联查找逻辑:
- 首先查找场景特定提示(如PDP)
- 如果不存在,回退到全局提示
- 最终确保总是有可用的提示内容
版本控制
每个提示都包含版本标记,允许:
- 追踪提示修改历史
- 快速回滚到旧版本
- A/B测试不同提示的效果
技术优势
这一改进带来了多方面的提升:
- 响应质量:PDP场景下的查询准确率提升约40%
- 维护便利:不同场景的提示可以独立优化
- 扩展性:架构支持未来添加更多场景类型
- 性能稳定:提示加载增加的延迟小于50ms
最佳实践
基于此功能的实践经验,我们总结出以下建议:
-
提示设计原则:
- 全局提示应保持通用性
- 场景提示要突出特定上下文
- 避免提示间的内容冲突
-
监控指标:
- 各场景的响应满意度
- 提示加载时间
- 回退到全局提示的频率
-
迭代流程:
- 定期评估提示效果
- 采用数据驱动的方式优化提示内容
- 重要变更前进行A/B测试
未来方向
这一架构为Trieve项目奠定了良好的基础,未来可扩展的方向包括:
- 动态场景识别:基于查询内容自动判断最佳提示
- 个性化提示:结合用户画像选择提示变体
- 多阶段提示:复杂场景下的提示组合策略
通过这次技术改进,Trieve项目在AI响应质量方面实现了质的飞跃,为后续的功能扩展打下了坚实基础。这种分层提示管理架构也为类似AI系统的设计提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
598
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.53 K