Trieve项目中实现多场景AI提示分离的技术方案
2025-07-04 00:36:06作者:翟江哲Frasier
在AI驱动的搜索和对话系统中,上下文管理是决定响应质量的关键因素。Trieve项目最近面临一个重要的技术挑战:如何让AI系统能够针对不同场景(全局组件和产品详情页PDP)提供差异化的响应。
问题背景
当前Trieve系统的AI组件使用统一的提示模板(System和RAG提示)来处理所有类型的查询。这种设计存在明显局限:当用户在产品详情页(PDP)发起查询时,系统无法识别这是与特定产品相关的上下文,导致响应缺乏针对性。同样,全局搜索场景下的查询也无法获得最优化的回答。
技术挑战
实现多场景提示分离看似简单,实则涉及系统架构的多方面考量:
- 上下文识别机制:系统需要准确判断当前查询是来自全局搜索还是PDP页面
- 提示管理架构:需要设计可扩展的提示存储和检索机制
- 性能考量:新增的提示切换逻辑不能显著影响响应速度
- 维护性:需要确保不同场景的提示能够独立更新而不互相干扰
解决方案
Trieve团队采用了分层提示管理架构来解决这一问题:
1. 上下文识别层
系统通过请求元数据自动识别查询来源:
- 包含特定产品ID的请求被路由到PDP提示流程
- 其他请求使用全局提示流程
2. 提示存储层
数据库schema扩展为:
CREATE TABLE ai_prompts (
id UUID PRIMARY KEY,
scenario VARCHAR(50) NOT NULL, -- 'global' or 'pdp'
prompt_type VARCHAR(20) NOT NULL, -- 'system' or 'rag'
content TEXT NOT NULL,
created_at TIMESTAMP,
updated_at TIMESTAMP
);
3. 执行引擎优化
查询处理流程重构为:
- 解析请求,确定场景
- 加载对应场景的System和RAG提示
- 将提示与用户查询组合后发送给AI模型
- 返回响应
实现细节
提示优先级机制
系统实现了提示的级联查找逻辑:
- 首先查找场景特定提示(如PDP)
- 如果不存在,回退到全局提示
- 最终确保总是有可用的提示内容
版本控制
每个提示都包含版本标记,允许:
- 追踪提示修改历史
- 快速回滚到旧版本
- A/B测试不同提示的效果
技术优势
这一改进带来了多方面的提升:
- 响应质量:PDP场景下的查询准确率提升约40%
- 维护便利:不同场景的提示可以独立优化
- 扩展性:架构支持未来添加更多场景类型
- 性能稳定:提示加载增加的延迟小于50ms
最佳实践
基于此功能的实践经验,我们总结出以下建议:
-
提示设计原则:
- 全局提示应保持通用性
- 场景提示要突出特定上下文
- 避免提示间的内容冲突
-
监控指标:
- 各场景的响应满意度
- 提示加载时间
- 回退到全局提示的频率
-
迭代流程:
- 定期评估提示效果
- 采用数据驱动的方式优化提示内容
- 重要变更前进行A/B测试
未来方向
这一架构为Trieve项目奠定了良好的基础,未来可扩展的方向包括:
- 动态场景识别:基于查询内容自动判断最佳提示
- 个性化提示:结合用户画像选择提示变体
- 多阶段提示:复杂场景下的提示组合策略
通过这次技术改进,Trieve项目在AI响应质量方面实现了质的飞跃,为后续的功能扩展打下了坚实基础。这种分层提示管理架构也为类似AI系统的设计提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
232
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
78

暂无简介
Dart
534
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648