LMFlow项目中的多轮对话数据集格式详解
2025-05-27 23:07:44作者:龚格成
在大型语言模型训练领域,LMFlow项目为开发者提供了强大的工具支持。本文将深入解析LMFlow项目中用于多轮对话训练的数据集格式要求,帮助开发者更好地准备训练数据。
对话数据集格式核心要素
LMFlow目前支持ShareGPT格式的对话数据,这种JSON格式的设计充分考虑了多轮对话场景的需求。一个典型的数据文件包含以下关键结构:
- 类型标识:通过"type":"conversation"明确指定数据类型
- 实例数组:包含多个对话实例的"instances"数组
每个对话实例又包含以下字段:
- conversation_id:用于跟踪对话的可选标识符
- system:系统提示词(可选)
- tools:工具描述列表(可选)
- messages:实际对话消息数组
消息数组的编排规范
消息数组是多轮对话的核心部分,需要严格遵循以下规则:
- 起始要求:必须以用户(user)消息开始
- 顺序要求:消息必须保持严格的交替顺序
- 配对要求:用户消息和助手消息必须成对出现
- 长度要求:数组长度应为偶数
当遇到以用户消息结尾的对话时,训练管道会自动修剪最后一个用户消息,确保数据格式的规范性。
实际应用示例
以Llama-2-Chat模型为例,我们需要手动处理系统提示和指令模板。以下是一个典型的两轮对话示例:
{
"messages": [
{
"role": "user",
"content": "[INST] <<SYS>>\n你是一个乐于助人的助手。\n<</SYS>>\n\n你好! [/INST]"
},
{
"role": "assistant",
"content": "你好,最近怎么样?"
},
{
"role": "user",
"content": "[INST] 还不错。 [/INST]"
},
{
"role": "assistant",
"content": "很高兴听到这个消息。"
}
]
}
最佳实践建议
- 字段处理:对于不需要的system和tools字段,可以分别设置为空字符串和空数组
- 内容验证:确保每条用户消息都包含完整的指令模板
- 数据质量:检查对话的连贯性和合理性
- 格式校验:使用JSON验证工具确保文件格式正确
通过遵循这些规范,开发者可以高效地准备适用于LMFlow项目的多轮对话训练数据,为模型训练打下坚实基础。随着项目的持续发展,未来可能会引入更智能的自动格式化功能,进一步简化数据准备流程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661