axios项目中getUri函数忽略回调式参数序列化器的问题解析
2025-04-28 09:35:31作者:裘旻烁
问题背景
在axios 1.7.7版本中,开发者发现使用getUri函数时,当paramsSerializer配置项采用回调函数形式时,该回调函数会被忽略,导致生成的URI不符合预期。这是一个在从旧版本迁移到1.x.x版本时可能遇到的兼容性问题。
问题重现
典型的问题场景如下:
const AXIOS = new Axios({});
return AXIOS.getUri({
url: "https://www.example.com/api",
params: {hello: "world"},
paramsSerializer: () => "foo=bar"
});
开发者期望生成的URI应该是:
https://www.example.com/api?foo=bar
但实际生成的URI却是:
https://www.example.com/api?hello=world
技术分析
这个问题源于axios 1.x版本对参数序列化器的处理方式变更:
-
历史版本处理方式:在axios 1.0.0之前的版本中,
paramsSerializer可以直接接受一个回调函数作为参数序列化器。 -
1.x版本新规范:在1.x版本中,参数序列化器应该是一个包含
serialize方法的对象,而不是直接的回调函数。 -
兼容性问题:虽然axios 1.x版本在类型定义中仍然保留了
CustomParamsSerializer类型(即回调函数形式),但在getUri函数的实现中,这种形式的序列化器会被忽略。
解决方案
正确的使用方式应该是:
return AXIOS.getUri({
url: "https://www.example.com/api",
params: {hello: "world"},
paramsSerializer: {
serialize: () => "foo=bar"
}
});
这种形式在getUri函数和常规请求中都能正常工作。
深入理解
-
参数序列化器的演变:
- 旧版本:简单回调函数
- 新版本:标准化为包含
serialize方法的对象 - 这种变化使得参数序列化器的配置更加规范化和可扩展
-
类型定义的保留:
- 虽然保留了回调函数类型的定义,但实际实现已经改变
- 这可能导致类型检查和实际运行行为不一致的情况
-
getUri函数的特殊性:
- 相比常规请求,
getUri函数对参数序列化器的处理更为严格 - 常规请求可能对旧式回调函数有更好的兼容性
- 相比常规请求,
最佳实践建议
- 统一使用对象形式的参数序列化器配置
- 在从旧版本迁移时,检查所有使用
paramsSerializer的地方 - 特别注意
getUri函数的使用场景 - 考虑封装统一的参数序列化逻辑,避免分散配置
总结
axios 1.x版本对参数序列化器的处理方式进行了规范化改进,但在向后兼容性上存在一些不足。开发者在使用getUri函数时,应当采用新的对象形式配置参数序列化器,以确保功能正常。这个问题也提醒我们,在升级重要依赖时,需要仔细检查变更日志和测试边缘场景的功能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146