agent-builder 的安装和配置教程
项目的基础介绍和主要的编程语言
agent-builder 是一个开源项目,旨在帮助开发者构建、测试和扩展自定义的 AI 代理和工具。该项目提供了一个模型驱动的途径,仅用几行代码即可创建 AI 代理。主要使用的编程语言是 Python。
项目使用的关键技术和框架
该项目使用了 Strands 框架,它包含了一系列的工具和功能,使得开发者可以创建具有特定功能的代理,开发自定义工具,并构建复杂的 AI 工作流程。同时,它集成了 Amazon Bedrock 知识库,用于存储和检索自定义工具、代理配置和开发历史。
项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装前,请确保您的系统中已经安装了以下环境和工具:
- Python(建议使用 Python 3.x)
- pip(Python 的包管理工具)
- git(版本控制工具)
安装步骤
-
克隆项目仓库
打开命令行工具,使用 git 命令克隆项目仓库:
git clone https://github.com/strands-agents/agent-builder.git -
安装依赖
进入项目目录,使用 pip 安装项目所需的依赖:
cd agent-builder pip install -r requirements.txt -
安装 Strands Agent Builder
使用 pipx 安装 Strands Agent Builder。pipx 是一个用于安装和运行 Python 包的工具,它可以确保每个包都在独立的环境中运行:
pipx install strands-agents-builder -
运行交互模式
安装完成后,运行以下命令启动 Strands Agent Builder 的交互模式:
strands这将启动命令行界面,你可以在其中创建和测试自定义工具,构建代理,以及执行其他操作。
-
创建自定义工具
在交互模式下,你可以按照项目文档中的示例创建自定义工具。例如,创建一个名为
sentiment_analyzer的工具,用于分析文本情绪:strands "Create a tool named sentiment_analyzer that analyzes text sentiment and test it with some examples" -
构建基于规格的代理
使用
cat命令将代理规格文件的内容传递给 Strands,以构建一个基于这些规格的专业代理:cat agent-spec.txt | strands "Build a specialized agent based on these specifications" -
使用知识库
如果你已经有了 Amazon Bedrock 知识库的 ID,可以通过以下方式加载和扩展工具:
strands --kb YOUR_KB_ID "Load my previous calculator tool and enhance it with scientific functions"或者,通过环境变量设置默认的知识库 ID:
export STRANDS_KNOWLEDGE_BASE_ID=YOUR_KB_ID strands "Find my most recent agent configuration and make it more efficient"
完成以上步骤后,你已经成功安装并配置了 agent-builder,可以开始创建和测试你自己的 AI 代理和工具了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00