Loguru项目适配Python 3.14的异步函数检测变更
在Python生态系统中,随着版本的不断演进,标准库中的一些API会经历重构和优化。最近,Python 3.14版本中引入了一个值得开发者注意的变化:asyncio.iscoroutinefunction()函数已被标记为弃用(deprecated),并计划在Python 3.16中移除。这一变更影响了包括Loguru在内的多个日志记录库。
背景与变更内容
Python核心开发团队决定将协程相关的类型检查函数统一整合到inspect模块中。原先位于asyncio模块中的iscoroutinefunction()函数现在被建议替换为inspect.iscoroutinefunction()。这一变更旨在:
- 统一类型检查函数的存放位置
- 减少模块间的功能重复
- 遵循Python标准库的组织原则
Loguru作为一个流行的日志记录库,在其内部实现中使用了asyncio.iscoroutinefunction()来检测流对象的complete方法是否为协程函数。这一功能主要用于处理异步日志记录场景。
技术实现细节
在Loguru的_simple_sinks.py文件中,原始实现如下:
self._completable = asyncio.iscoroutinefunction(getattr(stream, "complete", None))
当运行测试套件时,特别是在Python 3.14环境下,这会触发弃用警告。对于将警告视为错误的严格测试配置(如使用pytest的-Werror选项),这会导致测试失败。
解决方案与兼容性考虑
Loguru维护团队迅速响应了这一变更,采取了以下措施:
- 将
asyncio.iscoroutinefunction()替换为推荐的inspect.iscoroutinefunction() - 在持续集成(CI)系统中添加Python 3.14-dev环境的测试
- 确保向后兼容性,不影响现有功能
修改后的实现变为:
self._completable = inspect.iscoroutinefunction(getattr(stream, "complete", None))
这一变更虽然简单,但对于确保库在未来Python版本中的兼容性至关重要。
对开发者的启示
这一事件提醒Python开发者:
- 应定期关注Python版本更新日志中的弃用警告
- 在CI中尽早添加对新Python版本的支持测试
- 理解标准库模块重构背后的设计理念
- 保持代码的前瞻性,减少未来维护成本
对于使用Loguru的开发者来说,这一变更不会影响API的使用方式,但建议更新到包含此修复的版本以获得最佳的兼容性体验。
总结
Python生态系统的持续演进要求库维护者和应用开发者都保持警惕,及时适应标准库的变化。Loguru项目对Python 3.14中异步函数检测变更的快速响应,展示了其维护团队对兼容性和代码质量的重视。这一案例也为其他Python项目处理类似API变更提供了参考范例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00