Ligolo-ng代理在低版本GLIBC系统中的编译与运行解决方案
问题背景
在网络安全领域,Ligolo-ng是一个功能强大的隧道工具,常用于渗透测试和红队行动。然而,当用户尝试在较旧版本的Linux系统上运行其代理程序时,可能会遇到GLIBC版本不兼容的问题。这主要是因为现代Go程序默认会动态链接系统库,而旧系统可能不具备新版本GLIBC的支持。
问题现象
用户报告在目标系统上编译的代理程序无法运行,出现以下错误提示:
./.agent: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.34' not found
./.agent: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32' not found
这表明编译出的二进制文件依赖于较高版本的GLIBC库(2.32和2.34),而目标系统上的GLIBC版本较旧,无法满足这些依赖要求。
解决方案
1. 静态编译方法
通过设置CGO_ENABLED=0环境变量,可以强制Go编译器进行完全静态的编译,不依赖任何系统动态库:
CGO_ENABLED=0 go build -o agent cmd/agent/main.go
这种方法会生成一个完全静态的二进制文件,不依赖任何系统库,包括GLIBC。
2. 增强静态编译(可选)
对于需要额外保证静态链接的情况,可以结合使用静态链接标志:
CGO_ENABLED=0 go build -ldflags="-extldflags=-static" -o agent cmd/agent/main.go
技术原理
-
CGO_ENABLED=0:这个环境变量告诉Go编译器禁用CGO,即不链接任何C库。Go运行时将使用其内置的实现而非系统库。
-
静态链接:通过
-ldflags="-extldflags=-static"参数,确保即使有C依赖也会被静态链接,而不是动态链接。 -
兼容性影响:静态编译会增大二进制文件体积,但显著提高了在不同Linux发行版间的兼容性,特别是在老旧系统或定制系统中。
最佳实践建议
-
对于红队工具,建议默认使用静态编译,确保在各种目标环境中的兼容性。
-
在资源受限的环境中,可以考虑动态编译,但需要确保目标系统具备所需库版本。
-
测试阶段应在多种Linux发行版(特别是老旧版本)上验证代理的兼容性。
总结
通过禁用CGO和静态编译的技术手段,可以有效地解决Ligolo-ng代理在低版本GLIBC系统上的运行问题。这种方法不仅适用于Ligolo-ng,也适用于其他需要跨不同Linux系统部署的Go语言安全工具。理解这些编译选项的原理,有助于安全研究人员在各种复杂环境中灵活部署所需的工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00