Ligolo-ng代理在低版本GLIBC系统中的编译与运行解决方案
问题背景
在网络安全领域,Ligolo-ng是一个功能强大的隧道工具,常用于渗透测试和红队行动。然而,当用户尝试在较旧版本的Linux系统上运行其代理程序时,可能会遇到GLIBC版本不兼容的问题。这主要是因为现代Go程序默认会动态链接系统库,而旧系统可能不具备新版本GLIBC的支持。
问题现象
用户报告在目标系统上编译的代理程序无法运行,出现以下错误提示:
./.agent: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.34' not found
./.agent: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32' not found
这表明编译出的二进制文件依赖于较高版本的GLIBC库(2.32和2.34),而目标系统上的GLIBC版本较旧,无法满足这些依赖要求。
解决方案
1. 静态编译方法
通过设置CGO_ENABLED=0
环境变量,可以强制Go编译器进行完全静态的编译,不依赖任何系统动态库:
CGO_ENABLED=0 go build -o agent cmd/agent/main.go
这种方法会生成一个完全静态的二进制文件,不依赖任何系统库,包括GLIBC。
2. 增强静态编译(可选)
对于需要额外保证静态链接的情况,可以结合使用静态链接标志:
CGO_ENABLED=0 go build -ldflags="-extldflags=-static" -o agent cmd/agent/main.go
技术原理
-
CGO_ENABLED=0:这个环境变量告诉Go编译器禁用CGO,即不链接任何C库。Go运行时将使用其内置的实现而非系统库。
-
静态链接:通过
-ldflags="-extldflags=-static"
参数,确保即使有C依赖也会被静态链接,而不是动态链接。 -
兼容性影响:静态编译会增大二进制文件体积,但显著提高了在不同Linux发行版间的兼容性,特别是在老旧系统或定制系统中。
最佳实践建议
-
对于红队工具,建议默认使用静态编译,确保在各种目标环境中的兼容性。
-
在资源受限的环境中,可以考虑动态编译,但需要确保目标系统具备所需库版本。
-
测试阶段应在多种Linux发行版(特别是老旧版本)上验证代理的兼容性。
总结
通过禁用CGO和静态编译的技术手段,可以有效地解决Ligolo-ng代理在低版本GLIBC系统上的运行问题。这种方法不仅适用于Ligolo-ng,也适用于其他需要跨不同Linux系统部署的Go语言安全工具。理解这些编译选项的原理,有助于安全研究人员在各种复杂环境中灵活部署所需的工具。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









