Qiskit中受控酉门全局相位不一致问题的分析与解决
2025-06-04 17:49:50作者:董宙帆
问题背景
在量子计算框架Qiskit的最新版本中,用户报告了一个关于受控酉门(controlled unitary gate)实现的问题。具体表现为:当使用Aer模拟器进行状态向量模拟时,不同版本的Qiskit会产生不同的结果。经过深入分析,我们发现这实际上是一个关于量子电路全局相位(global phase)保持性的问题。
问题现象
用户在使用Qiskit 1.3.0版本时发现,对于包含自定义酉矩阵的受控门电路,Aer模拟器返回的状态向量与1.2.4版本不同。然而,当使用内置的Statevector类进行计算时,两个版本的结果却是一致的。
经过进一步测试发现,问题的核心在于:
- 使用transpile函数转换后的电路与原始电路在全局相位上存在差异
- 虽然两个电路在物理上是等价的(Operator.equiv返回True),但由于全局相位不同,直接比较(Operator.eq)会返回False
技术分析
全局相位的重要性
在量子力学中,全局相位通常被认为是没有物理意义的,因为测量结果只与量子态的幅度平方有关。然而,在某些情况下,特别是在复合电路中,保持全局相位的一致性对于中间计算结果和后续操作可能很重要。
问题根源
经过简化测试案例的分析,我们发现:
- 当使用transpile函数转换包含受控酉门的电路时,默认的分解过程没有严格保持全局相位
- 这种不一致性在Qiskit 1.3.0版本中表现得更为明显
- 直接使用Statevector类计算时没有问题,因为它是基于原始电路直接计算,不涉及分解过程
最小复现案例
以下代码可以复现该问题:
from qiskit import QuantumCircuit, transpile
from qiskit.circuit.library import UnitaryGate
from qiskit.quantum_info import random_unitary, Operator
rand_unitary = random_unitary(4, seed=73)
gate = UnitaryGate(rand_unitary).control(1)
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.append(gate, [0, 2, 1])
circ = transpile(circuit, basis_gates=['cx', 'u', 'unitary'])
print("运算符相等:", Operator(circuit) == Operator(circ)) # 返回False
print("运算符等价:", Operator(circuit).equiv(Operator(circ))) # 返回True
解决方案
对于遇到此问题的用户,有以下几种解决方案:
- 完全展开电路:在transpile时指定基础门集,强制完全展开电路
circ = transpile(circuit, basis_gates=["u", "cx"])
- 使用Statevector直接计算:避免使用Aer模拟器,直接使用内置的Statevector类
from qiskit.quantum_info import Statevector
sv = Statevector.from_instruction(circuit).data
- 比较等价性而非相等性:如果必须比较两个状态向量,使用equiv方法而不是直接比较
Statevector(circuit).equiv(Statevector(sv))
最佳实践建议
- 在需要精确控制全局相位的应用中,建议明确检查并处理相位问题
- 对于关键计算,考虑使用多种方法验证结果一致性
- 在比较量子态或运算符时,优先使用equiv方法而非直接相等性比较
- 保持Qiskit和相关组件的版本一致性,避免因版本差异导致的问题
总结
这个问题揭示了量子电路编译过程中全局相位保持的重要性。虽然从物理测量角度看全局相位通常不重要,但在某些计算场景中,保持相位一致性对于获得预期结果至关重要。开发者应当注意这一特性,并在必要时采取适当的措施确保计算的一致性。
对于Qiskit开发团队而言,这个问题也提示了需要进一步优化受控门的分解实现,确保其在各种情况下都能保持全局相位的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355