Qiskit中受控酉门全局相位不一致问题的分析与解决
2025-06-04 17:49:50作者:董宙帆
问题背景
在量子计算框架Qiskit的最新版本中,用户报告了一个关于受控酉门(controlled unitary gate)实现的问题。具体表现为:当使用Aer模拟器进行状态向量模拟时,不同版本的Qiskit会产生不同的结果。经过深入分析,我们发现这实际上是一个关于量子电路全局相位(global phase)保持性的问题。
问题现象
用户在使用Qiskit 1.3.0版本时发现,对于包含自定义酉矩阵的受控门电路,Aer模拟器返回的状态向量与1.2.4版本不同。然而,当使用内置的Statevector类进行计算时,两个版本的结果却是一致的。
经过进一步测试发现,问题的核心在于:
- 使用transpile函数转换后的电路与原始电路在全局相位上存在差异
- 虽然两个电路在物理上是等价的(Operator.equiv返回True),但由于全局相位不同,直接比较(Operator.eq)会返回False
技术分析
全局相位的重要性
在量子力学中,全局相位通常被认为是没有物理意义的,因为测量结果只与量子态的幅度平方有关。然而,在某些情况下,特别是在复合电路中,保持全局相位的一致性对于中间计算结果和后续操作可能很重要。
问题根源
经过简化测试案例的分析,我们发现:
- 当使用transpile函数转换包含受控酉门的电路时,默认的分解过程没有严格保持全局相位
- 这种不一致性在Qiskit 1.3.0版本中表现得更为明显
- 直接使用Statevector类计算时没有问题,因为它是基于原始电路直接计算,不涉及分解过程
最小复现案例
以下代码可以复现该问题:
from qiskit import QuantumCircuit, transpile
from qiskit.circuit.library import UnitaryGate
from qiskit.quantum_info import random_unitary, Operator
rand_unitary = random_unitary(4, seed=73)
gate = UnitaryGate(rand_unitary).control(1)
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.append(gate, [0, 2, 1])
circ = transpile(circuit, basis_gates=['cx', 'u', 'unitary'])
print("运算符相等:", Operator(circuit) == Operator(circ)) # 返回False
print("运算符等价:", Operator(circuit).equiv(Operator(circ))) # 返回True
解决方案
对于遇到此问题的用户,有以下几种解决方案:
- 完全展开电路:在transpile时指定基础门集,强制完全展开电路
circ = transpile(circuit, basis_gates=["u", "cx"])
- 使用Statevector直接计算:避免使用Aer模拟器,直接使用内置的Statevector类
from qiskit.quantum_info import Statevector
sv = Statevector.from_instruction(circuit).data
- 比较等价性而非相等性:如果必须比较两个状态向量,使用equiv方法而不是直接比较
Statevector(circuit).equiv(Statevector(sv))
最佳实践建议
- 在需要精确控制全局相位的应用中,建议明确检查并处理相位问题
- 对于关键计算,考虑使用多种方法验证结果一致性
- 在比较量子态或运算符时,优先使用equiv方法而非直接相等性比较
- 保持Qiskit和相关组件的版本一致性,避免因版本差异导致的问题
总结
这个问题揭示了量子电路编译过程中全局相位保持的重要性。虽然从物理测量角度看全局相位通常不重要,但在某些计算场景中,保持相位一致性对于获得预期结果至关重要。开发者应当注意这一特性,并在必要时采取适当的措施确保计算的一致性。
对于Qiskit开发团队而言,这个问题也提示了需要进一步优化受控门的分解实现,确保其在各种情况下都能保持全局相位的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248