OneDNN中跨原语共享Scratchpad的技术实现解析
2025-06-18 18:56:45作者:羿妍玫Ivan
背景与核心问题
在深度学习框架的底层优化中,OneDNN作为Intel推出的高性能计算库,其内存管理机制对性能有着决定性影响。开发者在实现自定义原语时,常会遇到需要在前向传播(forward)和反向传播(backward)之间共享临时内存的场景。本文针对Scratchpad(临时工作缓冲区)的跨原语复用问题,深入剖析技术原理和解决方案。
Scratchpad与Workspace的本质区别
OneDNN中存在两种易混淆的内存缓冲区:
-
Workspace
- 专为训练场景设计,在forward和backward之间持久化存在
- 由库自动管理生命周期,必须保持有效直到反向传播完成
- 典型应用:卷积运算中的中间梯度数据缓存
-
Scratchpad
- 临时性工作内存,仅存在于单次原语执行期间
- 可配置为库管理或用户管理模式
- 适用于任何传播类型(forward/inference/backward)
跨原语共享的技术挑战
当开发者尝试通过hint_fwd_pd传递原始指针时出现指针失效现象,这源于OneDNN的内存管理机制:
- Scratchpad默认在primitive执行完成后立即释放
- 直接传递裸指针会违反OneDNN的内存所有权模型
- 原语间的执行存在隐式内存屏障
解决方案与最佳实践
方案一:使用用户管理的Scratchpad
// 创建用户管理的scratchpad
memory::desc scratchpad_desc(...);
memory scratchpad_mem(scratchpad_desc, engine);
// 通过属性绑定到多个原语
primitive_attr attr;
attr.set_scratchpad_mode(scratchpad_mode::user);
// 前向和反向原语共享同一内存
forward_primitive(..., attr);
backward_primitive(..., attr, scratchpad_mem);
方案二:Workspace替代方案
对于必须持久化的数据:
- 在primitive_desc创建时声明需要workspace
- 通过
query_workspace获取内存需求 - 显式维护workspace内存的生命周期
关键注意事项
- 避免直接传递裸指针,使用OneDNN的内存抽象层
- 对于短期重用的临时缓冲区,优先考虑scratchpad
- 需要长期保持的数据应使用workspace
- 注意不同原语执行间的内存依赖关系
性能优化建议
- 内存复用:通过memory对象池减少重复分配
- 对齐配置:确保scratchpad满足硬件对齐要求
- 大小预估:使用
query_s64提前获取内存需求 - 异步执行:配合stream控制内存可见性
总结
OneDNN通过精细的内存管理机制平衡了性能与安全性。理解scratchpad和workspace的设计哲学,掌握其正确的共享方式,能够帮助开发者在保持内存安全的前提下实现极致的计算性能。对于需要跨原语共享临时数据的场景,建议优先采用用户管理的scratchpad模式,并通过OneDNN提供的标准接口进行内存传递,这既符合库的设计规范,也能获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217