OneDNN中跨原语共享Scratchpad的技术实现解析
2025-06-18 00:20:49作者:羿妍玫Ivan
背景与核心问题
在深度学习框架的底层优化中,OneDNN作为Intel推出的高性能计算库,其内存管理机制对性能有着决定性影响。开发者在实现自定义原语时,常会遇到需要在前向传播(forward)和反向传播(backward)之间共享临时内存的场景。本文针对Scratchpad(临时工作缓冲区)的跨原语复用问题,深入剖析技术原理和解决方案。
Scratchpad与Workspace的本质区别
OneDNN中存在两种易混淆的内存缓冲区:
-
Workspace
- 专为训练场景设计,在forward和backward之间持久化存在
- 由库自动管理生命周期,必须保持有效直到反向传播完成
- 典型应用:卷积运算中的中间梯度数据缓存
-
Scratchpad
- 临时性工作内存,仅存在于单次原语执行期间
- 可配置为库管理或用户管理模式
- 适用于任何传播类型(forward/inference/backward)
跨原语共享的技术挑战
当开发者尝试通过hint_fwd_pd传递原始指针时出现指针失效现象,这源于OneDNN的内存管理机制:
- Scratchpad默认在primitive执行完成后立即释放
- 直接传递裸指针会违反OneDNN的内存所有权模型
- 原语间的执行存在隐式内存屏障
解决方案与最佳实践
方案一:使用用户管理的Scratchpad
// 创建用户管理的scratchpad
memory::desc scratchpad_desc(...);
memory scratchpad_mem(scratchpad_desc, engine);
// 通过属性绑定到多个原语
primitive_attr attr;
attr.set_scratchpad_mode(scratchpad_mode::user);
// 前向和反向原语共享同一内存
forward_primitive(..., attr);
backward_primitive(..., attr, scratchpad_mem);
方案二:Workspace替代方案
对于必须持久化的数据:
- 在primitive_desc创建时声明需要workspace
- 通过
query_workspace获取内存需求 - 显式维护workspace内存的生命周期
关键注意事项
- 避免直接传递裸指针,使用OneDNN的内存抽象层
- 对于短期重用的临时缓冲区,优先考虑scratchpad
- 需要长期保持的数据应使用workspace
- 注意不同原语执行间的内存依赖关系
性能优化建议
- 内存复用:通过memory对象池减少重复分配
- 对齐配置:确保scratchpad满足硬件对齐要求
- 大小预估:使用
query_s64提前获取内存需求 - 异步执行:配合stream控制内存可见性
总结
OneDNN通过精细的内存管理机制平衡了性能与安全性。理解scratchpad和workspace的设计哲学,掌握其正确的共享方式,能够帮助开发者在保持内存安全的前提下实现极致的计算性能。对于需要跨原语共享临时数据的场景,建议优先采用用户管理的scratchpad模式,并通过OneDNN提供的标准接口进行内存传递,这既符合库的设计规范,也能获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178