STM32F407VG在stlink v1.8.0版本中的st-trace功能问题分析
问题背景
在使用stlink工具对STM32F407VG开发板进行调试时,用户发现从v1.7.0升级到v1.8.0版本后,st-trace功能无法正常工作。该问题在Ubuntu 24.04.2 LTS系统上出现,使用STLINK/V2.1编程器连接STM32F4DISCOVERY开发板。
问题现象
当用户执行st-trace -s<序列号> --clock=24m命令时,工具输出以下错误信息:
2025-03-28T14:20:17 INFO common.c: STM32F4x5_F4x7: 192 KiB SRAM, 1024 KiB flash in at least 16 KiB pages.
2025-03-28T14:20:17 INFO trace.c: Trace Port Interface configured to expect a 24000000 Hz system clock.
2025-03-28T14:20:17 INFO trace.c: Trace frequency set to 2000000 Hz.
2025-03-28T14:20:17 INFO trace.c: Reading Trace
libusb: error [submit_bulk_transfer] submiturb failed, errno=22
2025-03-28T14:20:17 ERROR usb.c: read_trace read error -1
2025-03-28T14:20:17 ERROR trace.c: Error reading trace (-1)
问题分析
-
版本兼容性问题:该问题仅在v1.8.0版本出现,而在v1.7.0版本中工作正常,表明可能是版本升级引入的兼容性问题。
-
USB通信错误:错误信息中显示
submiturb failed, errno=22,这通常表示USB传输过程中出现了无效参数错误。 -
时钟配置验证:用户确认24MHz时钟配置是正确的,因为相同的二进制文件在使用OpenOCD时可以正常工作。
-
权限问题排除:使用sudo执行命令仍然出现相同错误,排除了权限问题的可能性。
-
参数调整无效:尝试调整trace频率参数(
--trace=Xm)并未解决问题。
解决方案
用户通过自行构建最新版本的stlink工具解决了该问题,这表明:
-
Ubuntu软件包问题:Ubuntu官方仓库中的v1.8.0-1build2软件包可能包含已知bug或未包含最新修复。
-
源码构建优势:从源码构建可以获取最新的代码修复,避免了发行版软件包可能存在的滞后问题。
技术建议
对于遇到类似问题的开发者,建议:
-
优先尝试源码构建:从官方仓库获取最新源码进行构建,往往能解决发行版软件包中的已知问题。
-
版本选择策略:在必须使用特定功能时,评估版本兼容性,必要时保留多个版本的工具链。
-
错误诊断方法:遇到USB通信错误时,可以尝试:
- 更换USB线缆或端口
- 检查系统日志获取更多错误信息
- 尝试不同的USB主机控制器
-
社区支持:及时查看项目的问题追踪系统,了解是否有类似问题的报告和解决方案。
总结
该案例展示了开源工具链版本升级可能带来的兼容性问题,以及通过源码构建解决问题的有效性。对于嵌入式开发工具链,保持工具的更新和了解不同版本间的差异是确保开发顺利进行的重要保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00