使用pyaging工具包进行衰老时钟的搜索、引用与参数分析
2025-07-01 20:01:42作者:申梦珏Efrain
概述
pyaging是一个专注于衰老研究的Python工具包,提供了多种衰老时钟模型的实现和分析工具。本教程将详细介绍如何使用pyaging中的实用工具函数来搜索、引用和分析衰老时钟模型。
准备工作
首先需要导入pyaging包:
import pyaging as pya
衰老时钟搜索功能
pyaging提供了两种主要方式来搜索可用的衰老时钟模型。
通过DOI搜索
如果您知道目标时钟模型发表论文的DOI号,可以使用find_clock_by_doi函数进行精确搜索:
pya.utils.find_clock_by_doi('https://doi.org/10.1038/s43587-022-00248-2')
执行结果会显示与该DOI相关的所有时钟模型名称,这对于追踪同一研究团队开发的多个相关模型特别有用。
查看所有可用时钟
要获取pyaging中所有可用的衰老时钟列表,可以使用:
pya.utils.show_all_clocks()
这将输出一个完整的时钟模型名称列表,方便用户浏览和选择。
引用功能
在学术研究中使用这些时钟模型时,正确引用原始论文非常重要。pyaging提供了便捷的引用功能:
pya.utils.cite_clock('AltumAge')
该函数会返回指定时钟模型的完整引用信息,包括作者、标题、期刊和发表年份等。
获取时钟元数据
每个时钟模型都附带丰富的元数据信息,可以通过以下方式获取:
pya.utils.get_clock_metadata('AltumAge')
返回的元数据包括:
- 时钟名称
- 数据类型(如甲基化数据)
- 适用物种
- 发表年份
- 作者认可状态
- 引用信息
- DOI链接
- 其他备注信息
这些信息对于理解时钟模型的背景和应用场景非常有帮助。
时钟参数分析
深入分析时钟模型的内部参数对于理解其工作原理至关重要。
加载时钟模型
首先需要加载目标时钟:
logger = pya.logger.Logger('test_logger')
device = 'cpu'
dir = 'pyaging_data'
indent_level = 1
clock = pya.pred.load_clock('AltumAge', device, dir, logger, indent_level=indent_level)
查看模型结构
加载后可以直接查看模型结构:
clock
这将显示模型的层次结构,包括各线性层和批归一化层的配置。
分析权重参数
可以提取特定层的权重进行分析:
clock.base_model.linear1.weight
这对于理解模型如何对不同特征进行加权非常重要。
查看特征列表
时钟模型使用的特征列表可通过以下方式获取:
list(clock.features[0:10]) # 查看前10个特征
参考值分析
许多时钟模型包含参考值,可用于数据标准化:
list(clock.reference_values[0:10]) # 查看前10个参考值
直接获取元数据
从已加载的时钟对象中可以直接提取元数据:
clock.metadata
应用建议
- 模型选择:使用搜索功能找到最适合您研究需求的时钟模型
- 学术诚信:发表研究时务必使用引用功能正确引用原始论文
- 参数分析:深入理解模型参数有助于解释预测结果
- 数据兼容性:通过元数据确认时钟模型与您数据的兼容性
通过本教程介绍的工具,研究人员可以更高效地利用pyaging中的衰老时钟模型进行生物年龄预测和相关研究。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660