使用pyaging工具包进行衰老时钟的搜索、引用与参数分析
2025-07-01 12:49:10作者:申梦珏Efrain
概述
pyaging是一个专注于衰老研究的Python工具包,提供了多种衰老时钟模型的实现和分析工具。本教程将详细介绍如何使用pyaging中的实用工具函数来搜索、引用和分析衰老时钟模型。
准备工作
首先需要导入pyaging包:
import pyaging as pya
衰老时钟搜索功能
pyaging提供了两种主要方式来搜索可用的衰老时钟模型。
通过DOI搜索
如果您知道目标时钟模型发表论文的DOI号,可以使用find_clock_by_doi函数进行精确搜索:
pya.utils.find_clock_by_doi('https://doi.org/10.1038/s43587-022-00248-2')
执行结果会显示与该DOI相关的所有时钟模型名称,这对于追踪同一研究团队开发的多个相关模型特别有用。
查看所有可用时钟
要获取pyaging中所有可用的衰老时钟列表,可以使用:
pya.utils.show_all_clocks()
这将输出一个完整的时钟模型名称列表,方便用户浏览和选择。
引用功能
在学术研究中使用这些时钟模型时,正确引用原始论文非常重要。pyaging提供了便捷的引用功能:
pya.utils.cite_clock('AltumAge')
该函数会返回指定时钟模型的完整引用信息,包括作者、标题、期刊和发表年份等。
获取时钟元数据
每个时钟模型都附带丰富的元数据信息,可以通过以下方式获取:
pya.utils.get_clock_metadata('AltumAge')
返回的元数据包括:
- 时钟名称
- 数据类型(如甲基化数据)
- 适用物种
- 发表年份
- 作者认可状态
- 引用信息
- DOI链接
- 其他备注信息
这些信息对于理解时钟模型的背景和应用场景非常有帮助。
时钟参数分析
深入分析时钟模型的内部参数对于理解其工作原理至关重要。
加载时钟模型
首先需要加载目标时钟:
logger = pya.logger.Logger('test_logger')
device = 'cpu'
dir = 'pyaging_data'
indent_level = 1
clock = pya.pred.load_clock('AltumAge', device, dir, logger, indent_level=indent_level)
查看模型结构
加载后可以直接查看模型结构:
clock
这将显示模型的层次结构,包括各线性层和批归一化层的配置。
分析权重参数
可以提取特定层的权重进行分析:
clock.base_model.linear1.weight
这对于理解模型如何对不同特征进行加权非常重要。
查看特征列表
时钟模型使用的特征列表可通过以下方式获取:
list(clock.features[0:10]) # 查看前10个特征
参考值分析
许多时钟模型包含参考值,可用于数据标准化:
list(clock.reference_values[0:10]) # 查看前10个参考值
直接获取元数据
从已加载的时钟对象中可以直接提取元数据:
clock.metadata
应用建议
- 模型选择:使用搜索功能找到最适合您研究需求的时钟模型
- 学术诚信:发表研究时务必使用引用功能正确引用原始论文
- 参数分析:深入理解模型参数有助于解释预测结果
- 数据兼容性:通过元数据确认时钟模型与您数据的兼容性
通过本教程介绍的工具,研究人员可以更高效地利用pyaging中的衰老时钟模型进行生物年龄预测和相关研究。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134