Calva项目中的格式化功能改进:更灵活的地图排序与JSON配置支持
Calva作为一款优秀的Clojure开发工具,近期对其代码格式化功能进行了重要改进。这些改进主要集中在Replace Current Form (or Selection) with Pretty Printed Form命令的行为优化上,使开发者能够更灵活地控制代码格式化过程。
格式化功能的核心改进
最新版本(v2.0.448)主要实现了三个关键改进:
-
默认禁用地图键排序:现在执行格式化命令时,默认不再对map的键进行字母排序,保留了开发者原有的键顺序。这一改变尊重了开发者的编码习惯,特别是当键的顺序具有特定业务含义时。
-
完整的JSON到EDN转换支持:现在该命令能够完整处理JSON格式的配置参数,并将其转换为EDN格式。这意味着开发者现在可以使用zprint的全部配置选项来自定义格式化行为。
-
完善的文档说明:项目文档中新增了关于如何使用JSON配置参数的详细说明和示例,帮助开发者快速掌握高级格式化功能的使用方法。
技术实现细节
在底层实现上,Calva团队对参数处理流程进行了重构。现在当命令接收到配置参数时,会先进行完整的JSON解析,然后转换为EDN数据结构,最后传递给zprint引擎。这种处理方式确保了配置参数的灵活性和表达力。
对于map排序的控制,团队修改了默认的zprint配置,将:map {:sort? false}作为基础设置。开发者仍然可以通过传递自定义配置来覆盖这一默认行为,实现按需排序。
实际应用场景
这些改进特别适合以下开发场景:
- 当map键的顺序代表某种业务逻辑顺序时,保持原有顺序不变
- 需要与团队其他成员保持一致的代码风格时,可以通过共享配置实现
- 在大型项目中需要针对不同文件类型应用不同格式化规则时
开发者现在可以创建自己的快捷键绑定或使用Joyride脚本,基于这些改进实现更智能的自动化格式化流程。
总结
Calva的这次更新体现了工具对开发者工作流程的细致考量。通过提供更灵活的配置选项和更合理的默认行为,既满足了代码整洁性的需求,又尊重了开发者的编码意图。这种平衡对于提升开发体验和代码质量都具有重要意义。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00