MTEB项目中的多标签音频分类任务设计与实现
在机器学习领域,音频分类是一个重要的研究方向。MTEB(Massive Text Embedding Benchmark)作为一个专注于评估嵌入模型的基准测试框架,近期在其项目中新增了对多标签音频分类任务的支持。
多标签分类与传统的单标签分类不同,它允许一个音频样本同时属于多个类别。这种特性使得模型能够更好地处理现实世界中复杂的音频场景,比如一个音频片段可能同时包含"音乐"和"人声"两种元素。
实现多标签音频分类任务需要解决几个关键技术点:
-
评估指标选择:由于是多标签问题,不能简单地使用准确率等单标签评估指标。通常采用宏观/微观平均的F1分数、精确率和召回率等指标。
-
数据处理:音频数据需要经过特征提取转换为模型可处理的格式,常见的方法包括MFCC(梅尔频率倒谱系数)、频谱图等特征表示。
-
模型架构:需要设计能够处理多标签输出的模型,通常在基础音频模型后添加sigmoid激活函数的多头输出层。
-
损失函数:二元交叉熵损失是多标签分类的常用选择,因为它可以独立处理每个标签的概率预测。
在MTEB框架中实现这一功能,开发者需要创建继承自AbsTask的专用任务类,并实现相应的评估器(Evaluator)。这个评估器需要能够正确处理多标签预测结果,并计算适当的评估指标。
这一功能的加入使得MTEB框架不仅能够评估文本嵌入模型,还能扩展到音频领域,为研究人员提供了更全面的模型评估能力。未来,随着更多音频数据集的加入,这一功能将帮助研究者更好地理解和比较不同音频嵌入模型的性能表现。
对于刚接触音频分类的研究者来说,理解多标签分类与单标签分类的区别至关重要。多标签分类更贴近现实应用场景,但同时也带来了模型设计和评估上的新挑战。MTEB框架的这一扩展为研究者提供了一个标准化的评估平台,有助于推动音频分类技术的发展。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00