Deep Code Search:引领代码搜索新时代
2024-09-17 09:44:39作者:秋泉律Samson
项目介绍
Deep Code Search 是一个基于深度学习的代码搜索工具,旨在通过自然语言查询来检索相关的代码片段。该项目源自2018年ICSE国际软件工程会议的论文《Deep Code Search》,由Gu Xiaodong、Zhang Hongyu和Kim Sunghun共同开发。项目提供了两个版本的实现:Keras和PyTorch,分别位于keras和pytorch文件夹中。
项目技术分析
Keras版本
Keras版本的代码是按照论文中的实验设置编写的,虽然部分API调用已根据最新的Keras和Theano进行了调整,但整体保持了原始状态。对于希望复现DeepCS作为基线模型的用户,Keras版本是一个理想的选择,因为它更加稳定且易于复现。
PyTorch版本
PyTorch版本则是项目的最新版本,代码质量得到了提升,并增加了一些新功能。尽管目前存在一些问题,但对于希望进一步改进和使用DeepCS的用户来说,PyTorch版本提供了更多的灵活性和扩展性。
项目及技术应用场景
Deep Code Search的应用场景非常广泛,特别是在软件开发和维护过程中。以下是几个典型的应用场景:
- 代码检索:开发者在编写代码时,可以通过自然语言描述来快速找到相关的代码片段,提高开发效率。
- 代码重用:在大型项目中,开发者可以通过Deep Code Search找到已有的代码模块,避免重复造轮子,提升代码复用率。
- 代码维护:在代码库维护过程中,开发者可以通过搜索功能快速定位和修复问题,减少维护成本。
项目特点
- 双版本支持:项目同时提供了Keras和PyTorch两个版本的实现,满足不同用户的需求。
- 易于复现:Keras版本代码稳定,适合用于复现论文中的实验结果。
- 灵活扩展:PyTorch版本提供了更多的灵活性,适合开发者进行进一步的改进和扩展。
- 开源社区:项目鼓励用户贡献代码,共同推动Deep Code Search的发展。
结语
Deep Code Search不仅是一个强大的代码搜索工具,更是一个开源社区的结晶。无论你是希望复现论文结果,还是希望在实际项目中应用和改进Deep Code Search,这个项目都值得你深入探索。快来加入我们,一起推动代码搜索技术的发展吧!
参考文献
如果你觉得这个项目对你有帮助,欢迎引用以下文献:
@inproceedings{gu2018deepcs,
title={Deep Code Search},
author={Gu, Xiaodong and Zhang, Hongyu and Kim, Sunghun},
booktitle={Proceedings of the 2018 40th International Conference on Software Engineering (ICSE 2018)},
year={2018},
organization={ACM}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134