pg_duckdb项目中分区表扫描导致服务器崩溃问题分析
在pg_duckdb项目(一个将DuckDB嵌入PostgreSQL的扩展)中,开发者发现了一个严重的问题:当尝试扫描分区表并进行连接操作时,会导致PostgreSQL服务器崩溃。这个问题在启用PostgreSQL的断言检查(--enable-cassert)时尤为明显。
问题现象
当执行以下SQL语句序列时,PostgreSQL服务器会意外崩溃:
- 创建一个按列表分区的表t
- 创建一个普通表s
- 尝试对这两个表进行连接查询
崩溃发生在系统尝试获取分区表的关系块数时,触发了PostgreSQL内部的断言失败,导致服务器异常终止。
技术背景
pg_duckdb扩展允许在PostgreSQL中执行DuckDB查询引擎的功能。在这个场景中,系统尝试使用DuckDB的扫描功能来处理PostgreSQL的分区表。分区表是PostgreSQL中的一种特殊表结构,它将数据分散存储在多个物理表中,但在逻辑上表现为单个表。
问题根源
通过分析堆栈跟踪,可以确定问题出在以下几个方面:
-
分区表处理不完善:当pg_duckdb尝试扫描分区表时,没有正确处理分区表的特殊性质,直接调用了普通表的扫描逻辑。
-
断言检查失败:在PostgreSQL的缓冲区管理器中,RelationGetNumberOfBlocksInFork函数被调用时,传入了一个分区表的关系描述符,但该函数预期的是一个普通表或索引的关系描述符。
-
全局状态初始化问题:HeapReaderGlobalState的初始化过程中,没有对传入的关系类型进行验证,导致后续操作出现问题。
解决方案
该问题已在pg_duckdb的最新版本中通过PR #412修复。修复方案主要涉及:
-
增强分区表处理逻辑,确保在扫描分区表时使用正确的访问方法。
-
在全局状态初始化前添加关系类型检查,防止对不支持的表类型进行操作。
-
改进错误处理机制,在遇到不支持的操作时提供友好的错误信息而非直接崩溃。
最佳实践
对于使用pg_duckdb的开发者和DBA,建议:
-
及时更新到最新版本的pg_duckdb扩展,以获得最稳定的体验。
-
在生产环境中谨慎使用实验性功能,如"duckdb.force_execution"设置。
-
对于分区表操作,先在测试环境验证功能正常性,再部署到生产环境。
-
在编译PostgreSQL时,开发环境可以启用断言检查(--enable-cassert)以捕获潜在问题,但生产环境应禁用以提高性能。
这个问题的修复体现了开源社区对稳定性的重视,也展示了pg_duckdb项目在PostgreSQL和DuckDB集成方面持续改进的承诺。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00