PortaSpeech 开源项目使用教程
1. 项目介绍
PortaSpeech 是一个基于 PyTorch 实现的便携式和高品质的生成文本到语音(Text-to-Speech, TTS)模型。该项目旨在通过轻量级架构生成具有自然细节和丰富韵律的多样化语音。PortaSpeech 结合了变分自编码器(VAE)和归一化流(Normalizing Flow)的优点,能够在有限的模型参数下实现高质量的语音合成。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.x 和 PyTorch。然后,通过以下命令安装项目的依赖:
pip3 install -r requirements.txt
2.2 下载预训练模型
你需要下载预训练模型并将其放置在 output/ckpt/DATASET/ 目录下。例如,对于 LJSpeech 数据集,你可以运行以下命令:
wget https://example.com/pretrained_model.zip
unzip pretrained_model.zip -d output/ckpt/LJSpeech/
2.3 单条语音合成
使用以下命令合成单条语音:
python3 synthesize.py --text "你好,世界!" --restore_step 100000 --mode single --dataset LJSpeech
生成的语音将保存在 output/result/ 目录下。
2.4 批量语音合成
你也可以进行批量语音合成。首先,准备一个包含多条文本的文件,例如 preprocessed_data/LJSpeech/val.txt,然后运行以下命令:
python3 synthesize.py --source preprocessed_data/LJSpeech/val.txt --restore_step 100000 --mode batch --dataset LJSpeech
3. 应用案例和最佳实践
3.1 语音助手
PortaSpeech 可以用于开发语音助手,提供自然流畅的语音交互体验。通过调整语音合成的参数,可以实现不同风格的语音输出,满足多样化的应用需求。
3.2 有声书制作
在有声书制作中,PortaSpeech 可以快速生成高质量的语音内容,减少人工录制的时间和成本。通过批量处理文本文件,可以高效地生成整本书的有声版本。
3.3 教育应用
在教育领域,PortaSpeech 可以用于生成教学语音,帮助学生更好地理解和记忆课程内容。通过调整语音的韵律和语速,可以提高学习效果。
4. 典型生态项目
4.1 HiFi-GAN
HiFi-GAN 是一个与 PortaSpeech 兼容的声码器(Vocoder),用于将梅尔频谱图转换为高质量的音频波形。通过结合 PortaSpeech 和 HiFi-GAN,可以进一步提升语音合成的质量。
4.2 MelGAN
MelGAN 是另一个与 PortaSpeech 兼容的声码器,同样可以将梅尔频谱图转换为音频波形。MelGAN 在处理速度上具有优势,适合实时语音合成应用。
4.3 Montreal Forced Aligner
Montreal Forced Aligner(MFA)是一个用于强制对齐的工具,可以帮助 PortaSpeech 在训练过程中获得更准确的文本到语音的对齐信息。通过使用 MFA,可以提高模型的训练效果和语音合成的准确性。
通过以上模块的介绍和实践,你可以快速上手并应用 PortaSpeech 进行高质量的文本到语音合成。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00