Recommenders项目中的AzureML SDK从v1迁移到v2的技术实践
2025-05-10 01:33:38作者:邵娇湘
在机器学习项目开发中,依赖库的版本升级是一个常见但重要的技术任务。本文将以Recommenders项目为例,探讨如何将其使用的Azure Machine Learning SDK从v1版本迁移到v2版本。
背景与必要性
Azure Machine Learning SDK是微软提供的用于管理机器学习工作流的Python库。随着技术发展,该SDK已经从v1(azureml-core)演进到v2(azure-ai-ml)。虽然v1版本目前仍被支持,但微软已经明确其将在2025年9月终止支持。
迁移到v2版本不仅能确保项目长期维护性,还能带来以下优势:
- 更简洁的API设计
- 更好的性能优化
- 对Python 3.12等新版本的支持
- 更完善的文档和社区支持
迁移范围分析
在Recommenders项目中,AzureML SDK主要用于测试环节,特别是在自动化测试脚本中。主要涉及的功能包括:
- 机器学习工作区的连接和配置
- 实验提交和监控
- 计算资源管理
迁移技术要点
1. 依赖项变更
原v1版本依赖包为"azureml-core",而v2版本需要使用"azure-ai-ml"。这需要在项目配置文件中进行相应修改。
2. API接口重写
v2版本对API进行了重大重构,主要变化包括:
- 更面向对象的接口设计
- 简化的认证流程
- 统一的资源管理方式
例如,工作区连接从Workspace类变为MLClient类,实验提交流程也变得更加简洁。
3. 测试适配调整
由于SDK行为的变化,相关的测试用例需要进行相应调整,包括:
- 模拟对象的创建方式
- 异步操作的等待机制
- 错误处理模式
实施建议
- 分阶段迁移:可以先在测试环境中验证,再逐步推广到生产环境
- 兼容性测试:确保新版本不影响现有推荐算法的核心功能
- 文档更新:同步更新项目文档中的相关示例和说明
- 团队培训:组织团队成员熟悉v2版本的新特性和最佳实践
潜在挑战与解决方案
在迁移过程中可能会遇到以下挑战:
- API行为差异:某些在v1中可用的功能可能在v2中有不同实现方式
- 依赖冲突:与其他库的版本兼容性问题
- 学习曲线:团队成员需要时间适应新API
建议的解决方案包括:
- 充分利用微软提供的迁移指南
- 建立详细的测试覆盖
- 分模块逐步替换
总结
AzureML SDK从v1到v2的迁移是Recommenders项目持续健康发展的重要技术升级。通过系统性的规划和实施,可以确保项目既能利用最新技术优势,又能保持稳定运行。这种迁移经验也可以为其他机器学习项目的类似升级提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399