pykan项目中的FastKAN技术解析:基于RBF的快速KAN实现
2025-05-14 22:25:48作者:邓越浪Henry
在深度学习领域,Kolmogorov-Arnold Networks(KAN)作为一种新型网络架构引起了广泛关注。本文主要探讨pykan项目中FastKAN的实现原理,这是一种通过径向基函数(RBF)近似实现的高效KAN变体。
FastKAN的核心思想
FastKAN的基本思路是利用高斯径向基函数来近似3阶B样条基函数。在传统KAN实现中,3阶B样条是最常用的基函数选择。研究发现,这类样条函数可以通过高斯RBF函数获得良好的数值近似效果。
这种近似带来了两个关键优势:
- 计算效率显著提升:相比原始实现可获得3倍以上的前向传播加速
- 实现简化:避免了复杂的样条计算过程
技术实现细节
FastKAN的实现包含几个关键技术点:
-
RBF近似:采用高斯径向基函数替代B样条基函数,这是性能提升的关键。高斯RBF的形式为exp(-(x-c)²/σ²),其中c是中心点,σ控制宽度。
-
层归一化(LayerNorm):引入层归一化技术来避免网格重新缩放的问题,这对保持数值稳定性至关重要。
-
参数优化:通过调整RBF的参数(如中心点位置、宽度等)来获得最佳近似效果。
性能对比
在实际测试中,FastKAN展现出显著优势:
- 前向传播时间从740微秒降至220微秒
- 在MNIST数据集上达到97.9%的验证准确率
- 参数量控制在25万左右,与同等规模的MLP相当
值得注意的是,虽然FastKAN相比MLP仍有速度差距,但相比原始KAN实现已有显著改进。
理论探讨
从理论角度看,FastKAN的实现揭示了KAN与RBF网络之间的深层联系。具体来说:
- 3阶B样条KAN可以被视为一种特殊的单变量RBF网络
- 这种联系为理解KAN的数学本质提供了新视角
- 同时也引出了关于KAN独特价值的思考:如果KAN本质上可被RBF网络近似,那么其创新性究竟体现在何处?
实现变体与发展
基于FastKAN的思想,社区已经发展出多个变体实现:
- 原始FastKAN:使用标准高斯RBF
- RSWAF近似版本:采用不同的基函数形式,进一步提升了速度
- 混合架构:尝试结合不同近似方法的优势
这些变体在保持精度的同时,不断优化计算效率,为KAN的实际应用铺平道路。
总结与展望
FastKAN通过巧妙的RBF近似,为KAN的实际应用提供了高效实现方案。虽然其理论创新性仍有讨论空间,但在工程实践中的价值已经得到验证。未来发展方向可能包括:
- 探索更精确的基函数近似方法
- 研究KAN特有的、不能被RBF网络替代的性质
- 优化训练策略,提升大规模应用的可行性
这项技术展示了深度学习领域中,理论创新与工程优化相互促进的典型范例,为相关研究提供了有益参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137