pykan项目中的FastKAN技术解析:基于RBF的快速KAN实现
2025-05-14 16:12:15作者:邓越浪Henry
在深度学习领域,Kolmogorov-Arnold Networks(KAN)作为一种新型网络架构引起了广泛关注。本文主要探讨pykan项目中FastKAN的实现原理,这是一种通过径向基函数(RBF)近似实现的高效KAN变体。
FastKAN的核心思想
FastKAN的基本思路是利用高斯径向基函数来近似3阶B样条基函数。在传统KAN实现中,3阶B样条是最常用的基函数选择。研究发现,这类样条函数可以通过高斯RBF函数获得良好的数值近似效果。
这种近似带来了两个关键优势:
- 计算效率显著提升:相比原始实现可获得3倍以上的前向传播加速
- 实现简化:避免了复杂的样条计算过程
技术实现细节
FastKAN的实现包含几个关键技术点:
-
RBF近似:采用高斯径向基函数替代B样条基函数,这是性能提升的关键。高斯RBF的形式为exp(-(x-c)²/σ²),其中c是中心点,σ控制宽度。
-
层归一化(LayerNorm):引入层归一化技术来避免网格重新缩放的问题,这对保持数值稳定性至关重要。
-
参数优化:通过调整RBF的参数(如中心点位置、宽度等)来获得最佳近似效果。
性能对比
在实际测试中,FastKAN展现出显著优势:
- 前向传播时间从740微秒降至220微秒
- 在MNIST数据集上达到97.9%的验证准确率
- 参数量控制在25万左右,与同等规模的MLP相当
值得注意的是,虽然FastKAN相比MLP仍有速度差距,但相比原始KAN实现已有显著改进。
理论探讨
从理论角度看,FastKAN的实现揭示了KAN与RBF网络之间的深层联系。具体来说:
- 3阶B样条KAN可以被视为一种特殊的单变量RBF网络
- 这种联系为理解KAN的数学本质提供了新视角
- 同时也引出了关于KAN独特价值的思考:如果KAN本质上可被RBF网络近似,那么其创新性究竟体现在何处?
实现变体与发展
基于FastKAN的思想,社区已经发展出多个变体实现:
- 原始FastKAN:使用标准高斯RBF
- RSWAF近似版本:采用不同的基函数形式,进一步提升了速度
- 混合架构:尝试结合不同近似方法的优势
这些变体在保持精度的同时,不断优化计算效率,为KAN的实际应用铺平道路。
总结与展望
FastKAN通过巧妙的RBF近似,为KAN的实际应用提供了高效实现方案。虽然其理论创新性仍有讨论空间,但在工程实践中的价值已经得到验证。未来发展方向可能包括:
- 探索更精确的基函数近似方法
- 研究KAN特有的、不能被RBF网络替代的性质
- 优化训练策略,提升大规模应用的可行性
这项技术展示了深度学习领域中,理论创新与工程优化相互促进的典型范例,为相关研究提供了有益参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758