RSGUNet 图像增强项目使用教程
2024-09-15 04:33:20作者:宣利权Counsellor
1. 项目目录结构及介绍
rsgunet_image_enhance/
├── data/
│ ├── data_loss/
│ ├── loss_metrics/
│ └── metrics/
├── net/
│ └── squid/
│ ├── train.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── dataset_test.txt
├── dataset_train.txt
└── rsgunet.jpg
目录结构说明
-
data/: 包含数据损失、损失指标和指标相关的文件。
- data_loss/: 数据损失相关文件。
- loss_metrics/: 损失指标相关文件。
- metrics/: 指标相关文件。
-
net/: 包含网络相关的文件,特别是
squid
目录下的训练脚本。- squid/: 训练脚本和其他相关文件。
- train.py: 训练模型的主要脚本。
- squid/: 训练脚本和其他相关文件。
-
.gitignore: Git 忽略文件配置。
-
LICENSE: 项目许可证文件。
-
README.md: 项目说明文件。
-
dataset_test.txt: 测试数据集文件。
-
dataset_train.txt: 训练数据集文件。
-
rsgunet.jpg: 项目相关图片文件。
2. 项目启动文件介绍
train.py
train.py
是项目的主要启动文件,用于训练图像增强模型。该脚本位于 net/squid/
目录下。
主要功能
- 模型训练: 使用提供的训练数据集进行模型训练。
- 模型保存: 训练过程中保存模型检查点。
- 数据加载: 加载训练和验证数据集。
使用方法
python net/squid/train.py
3. 项目的配置文件介绍
dataset_train.txt
和 dataset_test.txt
这两个文件分别用于指定训练和测试数据集的路径。
内容示例
/path/to/train/image1.jpg
/path/to/train/image2.jpg
...
.gitignore
.gitignore
文件用于指定 Git 版本控制系统中需要忽略的文件和目录。
内容示例
*.pyc
__pycache__/
data/
README.md
README.md
文件是项目的说明文档,包含项目的基本信息、使用方法和引用信息。
内容示例
# RSGUNet 图像增强项目
## 项目简介
该项目是 PIRM2018 挑战赛智能手机感知图像增强任务的冠军解决方案。
## 使用方法
1. 使用检查点文件保存模型。
2. 使用数据集文件放置数据集。
3. 使用预训练的 VGG 模型进行训练。
## 引用
请引用我们的论文:
@InProceedings[RSGUNet2018,
author = [J. Huang and P. Zhu and M. Geng and J. Ran and X. Zhou and C. Xing and P. Wan and X. Ji],
title = [Range Scaling Global U-Net for Perceptual Image Enhancement on Mobile Devices],
booktitle = [European Conference on Computer Vision Workshops],
year = [2018],
]
通过以上内容,您可以快速了解并使用 RSGUNet 图像增强项目。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5