OpenVINO项目RISC-V平台Mod运算JIT发射器实现解析
2025-05-28 22:09:35作者:庞队千Virginia
背景介绍
OpenVINO作为英特尔推出的开源深度学习推理工具包,其核心功能之一是代码生成特性(又称张量编译器)。该特性能够自动生成高度优化的融合子图二进制代码,其中JIT发射器(JIT Emitters)是实现这一功能的关键组件。每个发射器负责实现OpenVINO低级方言中的特定运算操作。
技术挑战
在RISC-V 64位平台上实现浮点32位(FP32)的Mod运算JIT发射器,需要解决以下几个技术问题:
-
跨平台编译环境搭建:由于资源限制,目前主要采用交叉编译方式构建面向RISC-V开发板的OpenVINO。需要构建支持QEMU模拟器的RISC-V工具链。
-
向量指令集支持:需要基于RISC-V "V"向量扩展规范1.0版实现高效的向量化运算。
-
完整功能集成:不仅需要实现核心发射器,还需要在JIT执行器和RISC-V64内核中进行相应修改以支持新功能。
实现方案
1. 开发环境准备
开发前需要安装必要的依赖包,包括:
- 构建工具链:autoconf、automake、build-essential等
- 数学库:libmpc-dev、libmpfr-dev、libgmp-dev
- 开发工具:bison、flex、texinfo等
- 其他依赖:zlib1g-dev、libexpat-dev等
2. JIT发射器实现
Mod运算的JIT发射器需要实现以下核心功能:
- 浮点取模运算:基于RISC-V向量指令集实现高效的FP32取模运算
- 向量化处理:利用RVV1.0指令实现数据的批量处理
- 边界条件处理:处理除数为零等特殊情况
实现时需要参考OpenVINO CPU插件JIT发射器文档和RISC-V向量扩展规范。
3. 系统集成
完成发射器实现后,需要进行以下系统集成工作:
- JIT执行器支持:修改JIT执行器代码以支持新的Mod运算发射器
- 内核修改:在RISC-V64内核的两个关键位置添加支持
- 创建发射器的函数中注册新发射器
- 获取支持精度函数中添加Mod运算支持
4. 测试验证
在实现功能前,应先修改测试用例以确保新功能被充分覆盖:
- 添加JIT内核检查:在eltwise测试中添加对jit内核的检查
- 测试失败验证:确保在功能未实现时测试会失败
- 测试实例化:如果测试未失败,需要在CPU eltwise测试实例化中添加对Mod运算的支持
测试时需要使用GoogleTest框架,通过特定的过滤参数执行相关测试用例。
技术要点
- 向量指令优化:充分利用RISC-V向量指令集的并行计算能力,提高运算效率
- 精度处理:确保FP32运算的精度符合OpenVINO规范要求
- 异常处理:完善除零等异常情况的处理机制
- 性能调优:通过指令调度和寄存器分配优化性能
总结
在OpenVINO中为RISC-V平台实现Mod运算的JIT发射器是一个涉及多方面技术的任务,需要开发者具备以下能力:
- 深入理解RISC-V指令集架构,特别是向量扩展部分
- 熟悉OpenVINO的JIT发射器架构和工作原理
- 掌握跨平台开发和测试的方法
- 具备性能分析和优化的经验
通过本文的介绍,开发者可以全面了解在OpenVINO项目中为RISC-V平台实现新运算JIT发射器的完整流程和技术要点,为后续的类似开发工作提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322