GLM-4模型训练中Loss为0问题的深度解析与解决方案
2025-06-03 05:07:51作者:吴年前Myrtle
问题现象
在使用GLM-4模型进行微调训练时,部分开发者遇到了一个特殊现象:训练过程中Loss值持续显示为0.0,同时梯度范数(grad_norm)也为0.0。从日志中可以观察到,尽管学习率在正常变化,但模型似乎没有进行有效的参数更新。
问题分析
这种现象通常表明模型在训练过程中出现了梯度消失或优化器失效的情况。经过技术社区的多方验证,发现这一问题与DeepSpeed的配置密切相关。具体来说:
- DeepSpeed Zero阶段选择:当使用DeepSpeed Zero阶段2(Zero-2)优化时,可能会出现梯度计算异常的情况
- 梯度计算异常:模型在前向传播和反向传播过程中,梯度未能正确计算和传递
- 优化器状态:优化器未能正确接收和利用计算得到的梯度
解决方案
针对这一问题,目前有以下几种有效的解决方案:
方案一:切换DeepSpeed Zero阶段
将DeepSpeed配置从Zero-2改为Zero-3。Zero-3对参数分割和梯度计算的处理方式有所不同,能够避免Zero-2中出现的梯度计算问题。
方案二:调整DeepSpeed配置参数
如果必须使用Zero-2,可以尝试修改DeepSpeed的配置文件,具体调整以下参数:
- 调整梯度累积相关参数
- 修改优化器配置
- 检查混合精度训练设置
方案三:验证数据格式
虽然主要问题与DeepSpeed相关,但也建议检查训练数据的格式是否符合GLM-4的要求:
- 确认输入数据的tokenization是否正确
- 检查数据中的特殊标记是否被正确处理
- 验证数据中的角色标记(role)是否符合预期
预防措施
为了避免类似问题,建议在GLM-4模型训练时:
- 在开始完整训练前,先在小批量数据上进行测试运行
- 监控训练初期的Loss变化情况
- 定期检查梯度范数等训练指标
- 保持DeepSpeed和相关依赖库的版本更新
总结
GLM-4模型训练中出现Loss为0的问题主要源于DeepSpeed配置不当,特别是Zero-2阶段的一些限制。通过切换至Zero-3或调整相关配置参数,可以有效解决这一问题。同时,保持良好的训练监控习惯也能帮助开发者及时发现并解决类似问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328