GLM-4模型训练中Loss为0问题的深度解析与解决方案
2025-06-03 05:07:51作者:吴年前Myrtle
问题现象
在使用GLM-4模型进行微调训练时,部分开发者遇到了一个特殊现象:训练过程中Loss值持续显示为0.0,同时梯度范数(grad_norm)也为0.0。从日志中可以观察到,尽管学习率在正常变化,但模型似乎没有进行有效的参数更新。
问题分析
这种现象通常表明模型在训练过程中出现了梯度消失或优化器失效的情况。经过技术社区的多方验证,发现这一问题与DeepSpeed的配置密切相关。具体来说:
- DeepSpeed Zero阶段选择:当使用DeepSpeed Zero阶段2(Zero-2)优化时,可能会出现梯度计算异常的情况
- 梯度计算异常:模型在前向传播和反向传播过程中,梯度未能正确计算和传递
- 优化器状态:优化器未能正确接收和利用计算得到的梯度
解决方案
针对这一问题,目前有以下几种有效的解决方案:
方案一:切换DeepSpeed Zero阶段
将DeepSpeed配置从Zero-2改为Zero-3。Zero-3对参数分割和梯度计算的处理方式有所不同,能够避免Zero-2中出现的梯度计算问题。
方案二:调整DeepSpeed配置参数
如果必须使用Zero-2,可以尝试修改DeepSpeed的配置文件,具体调整以下参数:
- 调整梯度累积相关参数
- 修改优化器配置
- 检查混合精度训练设置
方案三:验证数据格式
虽然主要问题与DeepSpeed相关,但也建议检查训练数据的格式是否符合GLM-4的要求:
- 确认输入数据的tokenization是否正确
- 检查数据中的特殊标记是否被正确处理
- 验证数据中的角色标记(role)是否符合预期
预防措施
为了避免类似问题,建议在GLM-4模型训练时:
- 在开始完整训练前,先在小批量数据上进行测试运行
- 监控训练初期的Loss变化情况
- 定期检查梯度范数等训练指标
- 保持DeepSpeed和相关依赖库的版本更新
总结
GLM-4模型训练中出现Loss为0的问题主要源于DeepSpeed配置不当,特别是Zero-2阶段的一些限制。通过切换至Zero-3或调整相关配置参数,可以有效解决这一问题。同时,保持良好的训练监控习惯也能帮助开发者及时发现并解决类似问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217