Hatchet项目使用指南:高效分析层次化性能数据
2025-06-03 21:00:36作者:何举烈Damon
项目概述
Hatchet是一个专为分析层次化性能数据设计的Python工具,特别适合处理调用上下文树(Calling Context Tree)等结构化性能数据。该项目巧妙地将pandas数据框与图结构相结合,为性能分析工程师提供了强大的数据处理能力。
核心数据结构
GraphFrame结构
GraphFrame是Hatchet的核心数据结构,它由两个主要部分组成:
- Graph对象:存储节点间的边关系,形成有向图结构
- DataFrame对象:存储每个节点关联的数值指标和分类数据
这种设计使得性能数据既保持了层次关系,又能利用pandas强大的数据分析能力。GraphFrame支持从多种格式导入数据,包括HPCToolkit数据库、Caliper JSON/Cali文件和gprof/callgrind DOT文件等。
节点与路径表示
- 每个节点包含一个frame(由读取器定义)
- 调用路径通过从根节点到目标节点的frame串联形成
- 支持多进程数据,使用节点和MPI rank组成的多级索引
数据导入方法
Hatchet提供了多种便捷的数据导入方式:
# 从HPCToolkit数据库导入
gf = ht.GraphFrame.from_hpctoolkit("database_directory")
# 从Caliper JSON文件导入
gf = ht.GraphFrame.from_caliper("profile.json")
数据可视化技术
Hatchet支持多种可视化方式,满足不同场景需求:
1. 终端树形输出
print(gf.tree())
这种方法适合快速查看小型调用树的结构。
2. Graphviz DOT格式
with open("output.dot", "w") as f:
f.write(gf.to_dot())
生成DOT文件后,可使用Graphviz工具生成PDF等格式的图形。
3. 火焰图格式
with open("flame.txt", "w") as f:
f.write(gf.to_flamegraph())
生成的折叠堆栈文件可用flamegraph.pl脚本转换为SVG火焰图。
4. Jupyter交互式可视化
Hatchet提供了Jupyter notebook的交互式可视化功能,支持:
- 鼠标选择节点查看元数据
- 动态隐藏/显示节点
- 生成查询路径用于后续分析
数据框操作
数据过滤
# 使用lambda表达式过滤
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
# 使用查询对象过滤
query = [
{"name": "solvers"},
("*", {"time (inc)": "> 10"}),
{"name": "p[a-z]+[0-9]", "time (inc)": ">= 10"}
]
filtered_gf = gf.filter(query)
查询对象语法说明:
.
匹配一个节点*
匹配零或多个节点+
匹配一个或多个节点- 数字 匹配确切数量的节点
- 字典 定义节点过滤条件
数据聚合
# 按节点聚合多进程数据
gf.drop_index_levels(function=np.max)
图结构操作
遍历与压缩
# 前序遍历所有节点
for node in gf.graph.traverse():
print(node)
# 压缩过滤后的图结构
squashed_gf = filtered_gf.squash()
压缩操作会:
- 移除被过滤掉的节点
- 重新连接剩余节点的边关系
- 重新计算包含性指标
图比较与合并
# 图等价性检查
if gf1 == gf2:
print("Graphs are equivalent")
# 图合并
unified_gf = gf1.union(gf2)
GraphFrame运算
基本操作
# 复制
gf_copy = gf.copy()
# 深度复制
gf_deepcopy = gf.deepcopy()
数学运算
# 加法运算
result_gf = gf1 + gf2
# 减法运算
result_gf = gf1 - gf2
# 或使用原地操作
gf1 -= gf2
数学运算前会自动执行图合并和重索引操作,确保运算正确性。
最佳实践建议
- 过滤后压缩:执行filter操作后,建议立即执行squash以保持数据一致性
- 指标更新:图结构改变后,使用calculate_inclusive_metrics更新包含性指标
- 可视化选择:根据数据规模选择合适的可视化方式
- 小型数据:终端树形输出
- 中型数据:Graphviz图形
- 大型数据:火焰图
- 交互分析:在Jupyter环境中使用交互式可视化探索数据
通过掌握这些功能,性能分析工程师可以高效地处理和分析复杂的层次化性能数据,快速定位性能瓶颈和优化机会。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60