Qwen-VL项目中处理文本中的HTML标签与特殊标记符冲突问题
问题背景
在Qwen-VL项目中,当使用tokenizer的from_list_format方法处理包含HTML标签的文本时,可能会遇到特殊标记符冲突的问题。特别是当文本中包含类似<img>
这样的HTML标签时,系统会抛出"Unclosed image token"错误。
问题分析
这个问题源于Qwen-VL项目中tokenizer的特殊标记符设计。项目中默认将<img>
作为图片链接的特殊标记符(special token),当普通文本中恰好包含这个HTML标签时,tokenizer会误将其识别为特殊标记符,从而导致解析错误。
解决方案
方案一:过滤冲突标签
最直接的解决方案是在输入前过滤掉文本中与特殊标记符冲突的HTML标签。例如,可以移除文本中的<img>
标签:
text = "原始文本内容包含<img>标签"
clean_text = text.replace('<img>', '')
query = tokenizer.from_list_format([{'text': clean_text}])
这种方法简单直接,适用于已知冲突标签且可以安全移除的场景。
方案二:自定义特殊标记符
更灵活的解决方案是在初始化tokenizer时自定义特殊标记符的设置,避免与HTML标签冲突:
tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen-VL-Chat",
trust_remote_code=True,
image_start_tag='<image_my>'
)
通过将图片起始标记符改为<image_my>
这样的非HTML标准标签,可以完全避免与HTML标签的冲突。
技术实现原理
Qwen-VL的tokenizer在处理文本时,会先扫描特殊标记符。默认配置中,<img>
被设计为图片链接的起始标记符,tokenizer会期望后面跟随图片URL并以</img>
结束。当文本中出现孤立的<img>
标签时,tokenizer找不到对应的结束标记,因此报错。
最佳实践建议
-
预处理文本:在使用from_list_format前,建议对文本进行预处理,移除或替换可能冲突的标签。
-
自定义标记符:如果项目允许,建议初始化tokenizer时使用自定义的特殊标记符,从根本上避免冲突。
-
文档检查:处理HTML内容前,检查文档中是否包含与特殊标记符冲突的标签。
-
错误处理:在代码中添加适当的异常处理,捕获并妥善处理可能出现的标记符解析错误。
总结
Qwen-VL项目中tokenizer的特殊标记符设计虽然强大,但在处理包含HTML标签的文本时需要注意潜在的冲突问题。通过预处理文本或自定义标记符设置,开发者可以灵活地解决这类问题,确保文本处理的稳定性和可靠性。理解tokenizer的工作原理有助于开发者更好地利用这一工具处理各种复杂的文本场景。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0296- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









