Qwen-VL项目中处理文本中的HTML标签与特殊标记符冲突问题
问题背景
在Qwen-VL项目中,当使用tokenizer的from_list_format方法处理包含HTML标签的文本时,可能会遇到特殊标记符冲突的问题。特别是当文本中包含类似<img>这样的HTML标签时,系统会抛出"Unclosed image token"错误。
问题分析
这个问题源于Qwen-VL项目中tokenizer的特殊标记符设计。项目中默认将<img>作为图片链接的特殊标记符(special token),当普通文本中恰好包含这个HTML标签时,tokenizer会误将其识别为特殊标记符,从而导致解析错误。
解决方案
方案一:过滤冲突标签
最直接的解决方案是在输入前过滤掉文本中与特殊标记符冲突的HTML标签。例如,可以移除文本中的<img>标签:
text = "原始文本内容包含<img>标签"
clean_text = text.replace('<img>', '')
query = tokenizer.from_list_format([{'text': clean_text}])
这种方法简单直接,适用于已知冲突标签且可以安全移除的场景。
方案二:自定义特殊标记符
更灵活的解决方案是在初始化tokenizer时自定义特殊标记符的设置,避免与HTML标签冲突:
tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen-VL-Chat",
trust_remote_code=True,
image_start_tag='<image_my>'
)
通过将图片起始标记符改为<image_my>这样的非HTML标准标签,可以完全避免与HTML标签的冲突。
技术实现原理
Qwen-VL的tokenizer在处理文本时,会先扫描特殊标记符。默认配置中,<img>被设计为图片链接的起始标记符,tokenizer会期望后面跟随图片URL并以</img>结束。当文本中出现孤立的<img>标签时,tokenizer找不到对应的结束标记,因此报错。
最佳实践建议
-
预处理文本:在使用from_list_format前,建议对文本进行预处理,移除或替换可能冲突的标签。
-
自定义标记符:如果项目允许,建议初始化tokenizer时使用自定义的特殊标记符,从根本上避免冲突。
-
文档检查:处理HTML内容前,检查文档中是否包含与特殊标记符冲突的标签。
-
错误处理:在代码中添加适当的异常处理,捕获并妥善处理可能出现的标记符解析错误。
总结
Qwen-VL项目中tokenizer的特殊标记符设计虽然强大,但在处理包含HTML标签的文本时需要注意潜在的冲突问题。通过预处理文本或自定义标记符设置,开发者可以灵活地解决这类问题,确保文本处理的稳定性和可靠性。理解tokenizer的工作原理有助于开发者更好地利用这一工具处理各种复杂的文本场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00