CogVLM模型多卡并行微调技术解析
2025-06-02 04:15:36作者:胡唯隽
模型微调显存需求分析
CogVLM作为一款强大的视觉语言模型,在微调过程中对显存资源有着较高要求。根据项目实践经验,使用LoRA方法微调CogAgent模型时,显存需求相当可观,大约需要8张NVIDIA 3090显卡(24GB显存)才能顺利完成微调任务。
多卡并行配置方案
CogVLM项目支持通过模型并行技术将大型模型切分到多张显卡上进行训练,这一功能主要通过修改MP_SIZE参数实现。具体配置建议如下:
-
单机多卡配置:对于单机多卡环境,只需将NUM_GPUS_PER_WORKER设置为实际GPU数量,同时将MP_SIZE调整为相同数值即可。例如,使用4张显卡时,两个参数都应设为4。
-
显存优化策略:当显存资源不足时,可以考虑以下优化方案:
- 减少微调参数规模,例如仅训练语言模型的lm_head部分
- 不使用LoRA方法,采用更轻量级的微调方式
- 适当减小批次大小(batch size)
技术实现原理
CogVLM采用模型并行(Model Parallelism)技术实现多卡训练,这种技术将模型的不同层或不同部分分配到不同的GPU上,使得单个超大模型可以被拆分到多个设备的内存中。与数据并行(Data Parallelism)不同,模型并行关注的是模型本身的切分而非数据的切分。
实践建议
对于资源有限的开发者,建议:
- 优先尝试在较小规模的数据集上进行微调测试
- 监控显存使用情况,逐步调整模型切分策略
- 考虑使用梯度累积等技术补偿批次大小的减小
- 在显存不足时,可尝试混合精度训练以降低显存占用
通过合理配置多卡并行参数和优化训练策略,开发者可以在有限硬件资源下实现对CogVLM系列模型的有效微调。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355