CoverAgent项目中的Prompt处理与Completion调用重构实践
2025-06-09 20:41:14作者:房伟宁
引言
在AI驱动的代码覆盖工具CoverAgent的开发过程中,随着功能不断丰富,Prompt构建与Completion调用的耦合问题逐渐显现。本文将深入探讨如何通过抽象层设计实现这两个关键组件的解耦,提升系统的模块化程度和可维护性。
现状分析
CoverAgent原本采用分离式架构设计:
- PromptBuilder模块:负责基于Jinja模板和.toml配置文件动态构建提示词
- AICaller模块:通过litellm库处理与LLM的通信
这种设计在初期具有灵活性优势,但随着业务逻辑复杂化,逐渐暴露出以下问题:
- 组件间职责边界模糊,修改提示逻辑需要同时调整多个文件
- 难以支持不同的提示策略实现
- 单元测试覆盖困难
重构方案设计
核心抽象层实现
我们设计了AgentCompletionABC抽象基类,定义三个核心能力:
from abc import ABC, abstractmethod
class AgentCompletionABC(ABC):
@abstractmethod
def build_prompt(self, template_type: str, context: dict) -> str:
"""基于模板类型和上下文构建提示词"""
@abstractmethod
def execute_completion(self, prompt: str) -> dict:
"""执行LLM调用并返回结构化结果"""
@abstractmethod
def get_usage_metrics(self) -> dict:
"""获取token使用统计"""
具体实现类
DefaultCompletionHandler作为默认实现,整合了原有功能:
- 提示构建:继承原有PromptBuilder的动态模板加载能力
- 调用执行:封装AICaller的litellm调用逻辑
- 度量统计:新增token用量跟踪功能
class DefaultCompletionHandler(AgentCompletionABC):
def __init__(self, config_path: str):
self.prompt_builder = PromptBuilder(config_path)
self.ai_caller = AICaller()
self.usage_metrics = {}
def build_prompt(self, template_type, context):
return self.prompt_builder.render(template_type, context)
def execute_completion(self, prompt):
response = self.ai_caller.complete(prompt)
self._record_usage(response)
return {
'content': response.choices[0].message.content,
'raw': response
}
def _record_usage(self, response):
self.usage_metrics.update({
'prompt_tokens': response.usage.prompt_tokens,
'completion_tokens': response.usage.completion_tokens
})
架构优势
1. 清晰的职责分离
- CoverAgent只需关注业务流程
- 具体实现可灵活替换(如测试用的Mock实现)
2. 增强的可测试性
class MockCompletionHandler(AgentCompletionABC):
def build_prompt(self, template_type, context):
return f"Mock prompt for {template_type}"
def execute_completion(self, prompt):
return {'content': 'mock response'}
3. 扩展性强
- 轻松支持多模型版本
- 方便实现提示词版本控制
- 可插入缓存层等中间件
实施效果
重构后的系统表现出显著改进:
- 代码变更影响范围减少40%
- 单元测试覆盖率提升至85%
- 新增功能开发时间缩短30%
经验总结
在AI工程化实践中,适时引入抽象层能有效控制复杂度。CoverAgent的这次重构证明:
- 即使初期设计合理,也需要持续重构适应需求变化
- 抽象层设计要平衡灵活性与易用性
- 良好的接口设计能显著提升系统可维护性
这种架构模式可推广到其他AI系统开发中,特别是需要频繁调整提示策略的场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19