开源项目最佳实践:RARE 项目教程
2025-05-21 18:28:07作者:宗隆裙
1. 项目介绍
RARE(Retrieval-Augmented Reasoning Modeling)是一个新颖的框架,它将知识存储与推理建模解耦,从而加速推理建模过程,避免对低级别知识的机械记忆。该项目旨在通过结合领域知识和思考,提高大型语言模型(LLM)在推理方面的深度和准确性。RARE 的研究成果和实践进展将在本仓库中持续更新。
2. 项目快速启动
在开始之前,确保您已经安装了 Git 和 Conda。以下是快速启动 RARE 项目的步骤:
# 克隆项目仓库
git clone https://github.com/Open-DataFlow/RARE.git
cd RARE
# 创建并激活虚拟环境
conda create -n rare python=3.10
conda activate rare
# 安装项目依赖
pip install -r requirements.txt
快速启动示例
项目提供了两个完整的示例,一个是纯语言任务,一个是视觉-语言任务。
- 纯语言任务(PubMedQA 数据集):
# 训练模型
bash demo/llama_pubmedqa_rare.sh
- 视觉-语言任务(MM-RAIT 数据集):
# 训练模型
bash demo/qwenvl_mmrait_rare.sh
3. 应用案例和最佳实践
数据准备
项目提供了处理不同来源数据的方法。以下是将原始数据格式化的步骤:
# 下载和解压数据集
huggingface-cli download --repo-type dataset --resume-download yuhkalhic/rare_share --local-dir process/rare_share
unzip process/rare_share/system=planner_addret,dataset=all_dev,debug=False.zip -d process/rare_share/system=planner_addret,dataset=all_dev,debug=False
unzip process/rare_share/system=planner_addret,dataset=all_train,debug=False.zip -d process/rare_share/system=planner_addret,dataset=all_train,debug=False
unzip process/rare_share/system=planner_addret,dataset=all_test,debug=False.zip -d process/rare_share/system=planner_addret,dataset=all_test,debug=False
# 处理数据集
python process/process_medqa.py
python process/process_pubmed.py
python process/process_pubhealth.py
python process/process_casehold.py
python process/process_finfact.py
python process/process_mmrait.py
模型训练
训练代码支持多种类型的模型。以下是一些具体的模型名称示例:
- meta-llama/Llama-3.1-8B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- mistralai/Mistral-7B-Instruct-v0.3
根据您的需要选择合适的模型,并修改 fsdp_config 参数。如果需要使用更多的模型,可以修改 train/sft.py 中的代码。
- 仅使用文本数据集(medqa, pubmed, pubhealth, casehold, finfact):
# 训练模型
bash train/sft.sh
- 使用多模态数据集(mmrait):
# 训练模型
accelerate launch --config_file train/accelerate_config_mm.yaml train/train.py train/training_args_mm.yaml
模型推理
推理脚本支持五种类型的模型。以下是一些具体的模型名称示例:
- meta-llama/Llama-3.1-8B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- mistralai/Mistral-7B-Instruct-v0.3
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- Qwen/Qwen2.5-VL-7B-Instruct
对于测试集,至少完成预处理的第一步,包括问题和标准答案。以下是一个推理示例:
# 推理
python inference/vllm_infer_text.py --model_name_or_path saves/medqa-llama --dataset_path data/test_medqa.json --template llama --prediction_key llm_predict_rare_llama --tensor_parallel_size 8
4. 典型生态项目
RARE 作为一个开源项目,其生态系统中包含了多个相关的项目和工具,例如:
- 数据集处理工具:用于处理不同来源和格式的数据集。
- 预训练模型:提供多种预训练模型以供选择和使用。
- 推理工具:支持多种模型进行推理,并提供了相应的脚本。
通过这些典型生态项目,开发者可以更方便地使用 RARE 进行研究和开发。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134