Presto项目中Native Sidecar插件测试工具的使用问题解析
在Presto项目的开发过程中,测试工具的正确使用对于保证代码质量至关重要。本文将深入分析一个在Presto项目中遇到的关于Native Sidecar插件测试工具使用的典型问题,以及其解决方案。
问题背景
在Presto项目中,presto-native-sidecar-plugin模块提供了一个名为setupNativeSidecarPlugin的测试辅助函数,该函数位于NativeSidecarPluginQueryRunnerUtils类中。这个函数的主要作用是在测试用的QueryRunner上安装Native Sidecar插件。
当开发者尝试在presto-native-tests模块中使用这个测试辅助函数时,遇到了NoClassDefFoundError异常,提示无法找到NativeSidecarPlugin类。这个问题暴露了跨模块测试工具使用时的依赖管理问题。
问题分析
问题的根源在于Maven依赖配置不当。最初开发者尝试在presto-native-tests模块的pom.xml中添加如下依赖:
<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-native-sidecar-plugin</artifactId>
<version>${project.version}</version>
<scope>test</scope>
<type>test-jar</type>
</dependency>
这种配置只能访问presto-native-sidecar-plugin模块的测试代码(test-jar),但无法访问该模块的主代码(包含NativeSidecarPlugin类)。当测试辅助函数setupNativeSidecarPlugin尝试加载主代码中的类时,就会抛出NoClassDefFoundError。
解决方案
正确的做法是添加两个依赖项:
- 一个依赖用于访问模块的主代码
- 另一个依赖用于访问模块的测试代码
具体配置如下:
<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-native-sidecar-plugin</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-native-sidecar-plugin</artifactId>
<scope>test</scope>
<type>test-jar</type>
<version>${project.version}</version>
</dependency>
这种配置确保了:
- 可以访问
presto-native-sidecar-plugin模块的主代码(第一个依赖) - 可以访问该模块的测试工具代码(第二个依赖)
- 所有依赖都限定在测试范围内(
scope=test),不会污染生产代码
技术要点
-
Maven依赖类型:
test-jar类型专门用于访问模块的测试代码,而默认类型(jar)用于访问主代码。 -
依赖范围:将依赖范围设置为
test可以确保这些依赖只在测试阶段可用,不会影响生产部署。 -
跨模块测试工具使用:当一个模块的测试工具需要依赖另一个模块的主代码时,必须同时添加对主代码和测试代码的依赖。
-
Maven依赖分析:Maven的dependency插件会检查未使用的依赖,合理的依赖配置应该通过这种检查。
最佳实践
-
当使用其他模块的测试工具时,仔细检查这些工具是否依赖主代码中的类。
-
在添加依赖时,明确区分是只需要测试代码还是同时需要主代码。
-
尽量保持依赖范围最小化,优先使用
test范围而非compile范围。 -
定期运行Maven的依赖分析工具,确保没有冗余或不合理的依赖配置。
通过理解这个问题的解决方案,开发者可以更好地管理Presto项目中复杂的模块间依赖关系,特别是在测试场景下。这种知识也适用于其他大型Java项目的开发和测试工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00