uWebSockets v20.73.0版本发布:引入libdeflate加速解压性能
项目简介
uWebSockets是一个高性能的C++ WebSocket和HTTP服务器库,以其卓越的性能和轻量级设计著称。该项目由uNetworkingAB团队维护,广泛应用于需要高并发、低延迟网络通信的场景。最新发布的v20.73.0版本重点优化了数据解压(inflation)性能,通过引入libdeflate库作为快速路径,显著提升了处理压缩数据的效率。
性能优化亮点
本次更新的核心改进是重新引入了对libdeflate的支持,但这次有明确的定位——专门用于数据解压(inflation)过程,并作为zlib的快速路径。这种设计决策体现了开发团队对性能瓶颈的精准把握和优化策略的针对性。
技术实现细节
-
选择性集成:不同于全功能集成,本次更新仅将libdeflate用于解压路径,保持了代码的简洁性。
-
构建选项:通过
WITH_LIBDEFLATE=1 make
命令构建时,示例程序将使用这一优化路径。需要注意的是,用户需要先构建相关的子模块。 -
兼容性设计:这一优化仅与uWS::SHARED_DECOMPRESSOR兼容,确保了功能稳定性。
性能对比数据
开发团队通过改进的load_test.c
基准测试程序,专门测量了解压性能的提升效果。测试场景是回显300字节的压缩JSON消息,结果令人印象深刻:
- 动态链接标准zlib:约11万消息/秒
- 静态链接优化版zlib:约13万消息/秒
- 使用libdeflate快速路径:约18万消息/秒
- 完全不进行解压:约32万消息/秒
从数据可以看出,libdeflate快速路径带来了约38%的性能提升(相对于优化版zlib),使解压性能更接近理论极限(无解压情况下的吞吐量)。
技术意义与适用场景
这一优化对于以下场景特别有价值:
-
高频率消息交换:如金融交易系统、实时游戏等对延迟敏感的应用。
-
移动网络环境:压缩数据可节省带宽,而快速解压能保证响应速度。
-
物联网设备:资源受限环境下仍需要高效处理压缩数据。
实现原理浅析
libdeflate之所以能提供更好的解压性能,主要源于:
-
算法优化:专门针对现代CPU架构进行了指令级优化。
-
内存访问模式:减少了缓存未命中情况。
-
并行处理:更高效地利用CPU的多级流水线。
开发者建议
对于考虑采用此优化的开发者,建议:
-
评估应用场景中压缩/解压操作的比例,如果解压是瓶颈则值得采用。
-
测试目标硬件平台的实际性能提升,不同CPU架构可能有差异。
-
注意内存使用情况,虽然性能提升显著,但需确保系统资源充足。
总结
uWebSockets v20.73.0通过精心设计的libdeflate集成,为高性能网络应用提供了又一利器。这种针对特定瓶颈的精准优化,体现了项目团队对性能极致追求的工程哲学。对于需要处理大量压缩数据的实时应用,这一更新无疑将带来显著的性能提升。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









