Classiq量子计算项目:基于概率虚时间演化的最优调度实现
量子计算领域中的虚时间演化方法是一种寻找量子系统基态的有效技术。本文将深入探讨如何在Classiq量子计算平台上实现概率虚时间演化(PITE)算法,并比较两种不同时间离散化调度方案的性能表现。
理论基础与算法背景
虚时间演化是量子计算中用于寻找哈密顿量基态的重要方法。与传统实时间演化不同,虚时间演化通过引入虚数时间参数,使得高能态分量随时间呈指数衰减,最终收敛到基态。
概率虚时间演化(PITE)算法由Taichi Kosugi等人提出,通过量子计算机实现虚时间演化过程。该算法的核心思想是将虚时间演化操作分解为一系列量子门操作,利用辅助量子比特和测量来实现非幺正演化。
Hirofumi Nishi等人进一步提出了最优调度方法,改进了传统线性时间离散化的效率问题。这种方法通过优化时间步长的分配,可以在相同步数下获得更好的收敛效果。
实现目标与方法
我们选择实现一个N量子比特的Ising模型哈密顿量:
Ĥ = Σ(i≥j) h_{i,j} σ̂_z^(i)σ̂_z^(j) + Σ(i=0)^(N-1) J_i σ̂_x^(i)
其中参数设置为h_{i,j}=0.5,J_i=0.7。这个模型在量子多体系统和量子化学中具有广泛应用。
实现过程分为三个主要部分:
- 算法实现:在Classiq平台上构建PITE量子电路,实现两种时间离散化方法
- 资源分析:比较两种方法在10个时间步长下的CX门数量
- 性能验证:估计哈密顿量的基态能量
技术实现细节
在Classiq平台上,我们采用以下步骤实现PITE算法:
- 哈密顿量编码:将Ising模型哈密顿量表示为泡利字符串的线性组合
- 时间演化操作:使用Classiq的unitary()函数或等效的哈密顿量模拟方法实现时间演化
- 辅助量子比特管理:设计适当的辅助量子比特测量方案实现非幺正演化
- 最优调度实现:根据论文提出的方法实现两种不同的时间步长分配方案
对于最优调度方法,关键在于时间步长的非线性分配。相比均匀时间步长,最优调度在演化初期采用较小步长,后期逐步增大,这种自适应策略可以显著提高收敛速度。
性能分析与结果
通过Classiq的优化功能,我们对两种方法进行了详细的资源分析:
- CX门数量比较:最优调度方法通常需要更少的CX门即可达到相同精度
- 收敛速度:最优调度表现出更快的收敛特性
- 基态估计:成功获得了哈密顿量的最低能量本征值
实验结果表明,最优调度方法在保持算法精度的同时,显著减少了量子资源消耗。特别是在较大系统尺寸下,这种优势更为明显。
应用前景与展望
这项工作的实现为量子计算中的基态求解问题提供了有效工具,具有广泛的应用前景:
- 量子化学计算:可用于分子系统基态能量的精确计算
- 材料模拟:适用于复杂量子多体系统的研究
- 优化问题:可将组合优化问题映射为基态求解问题
未来工作可以进一步探索:
- 更大规模系统的实现
- 与其他量子算法的结合
- 误差缓解技术的应用
通过Classiq平台的高级抽象和优化功能,我们成功实现了这一复杂的量子算法,为量子计算在实际问题中的应用提供了有力工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0288- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









