Grafana Tempo 2.7.0版本发布:分布式追踪系统的重大升级
Grafana Tempo是一个开源的分布式追踪系统,专注于高性能、低成本的大规模追踪数据存储与查询。作为Grafana可观测性栈的重要组成部分,Tempo能够与Prometheus、Loki和Grafana无缝集成,为微服务架构提供完整的追踪解决方案。
核心架构改进
2.7.0版本对Tempo的核心架构进行了多项重要改进。最显著的是完成了从OpenTracing到OpenTelemetry的全面迁移,移除了原有的use_otel_tracer配置选项。这一变化意味着Tempo现在完全拥抱了CNCF的OpenTelemetry标准,用户需要通过标准的OpenTelemetry环境变量来配置span导出器。对于仍希望使用Jaeger导出器的用户,只需设置OTEL_TRACES_EXPORTER=jaeger环境变量即可。
在性能优化方面,新版本默认禁用了gRPC压缩以提高查询性能。如果用户确实需要压缩功能,建议使用'snappy'算法,并提供了相应的配置示例。此外,查询路径增加了最大span数限制,防止查询请求对读取路径造成过大压力,用户可以通过设置max_spans_per_span_set为0来恢复旧有行为。
查询功能增强
TraceQL作为Tempo的查询语言,在本版本中获得了多项重要增强:
- 新增了对instrumentation scope的支持,使得查询可以基于检测范围进行过滤
- 增加了
avg_over_time、min_over_time和max_over_time等时间序列聚合函数 - 改进了正则表达式匹配器的实现,现在使用Prometheus的快速正则引擎,并且所有正则表达式都会自动进行完全锚定
- 增加了对字节谓词的范围条件支持
查询前端也进行了多项优化,包括添加了查询表达式最大长度限制,以及改进结果收集机制,显著提升了复杂查询的性能。
存储与压缩优化
在存储层方面,2.7.0版本引入了多项改进:
- 租户索引现在同时以proto和json格式写入,优先使用proto格式以提高效率
- 为tempodb/backend实现了zstd编码/解码池,减少内存分配
- 启动时增加了对已完成块的验证检查
- 修复了SingleBinary模式下可能导致TraceQL指标结果重复的压缩bug
对于ingester组件,通过改进prealloc行为显著减少了工作集大小,并新增了多个环境变量和指标来观察和调整prealloc行为。
指标与监控增强
新版本在指标和监控方面也有显著改进:
- 分发器现在会导出成本归属使用指标
- 增加了对丢弃span的日志记录功能(
log_discarded_spans) - 在标签和标签值端点中添加了吞吐量和SLO指标
- 新增了
tempo_metrics_generator_live_trace_bytes和tempo_ingester_live_trace_bytes指标来更好地跟踪每个租户在ingester中消耗的字节数
安全性与稳定性提升
2.7.0版本在安全性和稳定性方面做出了多项改进:
- 更新了OpenTelemetry依赖至v0.116.0,将接收器默认绑定到localhost而非0.0.0.0
- 收紧了文件权限设置
- 修复了多个可能导致安全问题的bug
- 增加了对授权头的正确处理
- 改进了"trace too large"错误的处理,现在会返回422状态码
工具与CLI改进
tempo-cli工具在本版本中获得了多项增强:
- 默认使用
/api/v2/traces端点,同时保留--v1标志以兼容旧版API - 支持在单次操作中删除多个trace
- 修复了S3Pass和S3User参数未被使用的问题
- 增加了
insecure-skip-verify选项以跳过S3后端的SSL证书验证
总结
Grafana Tempo 2.7.0是一个功能丰富且注重性能的版本,在查询能力、存储效率、安全性和工具支持等方面都有显著提升。特别是对OpenTelemetry标准的全面支持,使得Tempo在现代可观测性栈中的集成更加无缝。对于现有用户,建议仔细阅读版本变更说明,特别是那些标记为"BREAKING CHANGE"的部分,以确保平滑升级。新用户则可以从这个更加成熟和功能完善的版本开始,构建高效可靠的分布式追踪系统。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00