Yaklang/Yakit项目中Nuclei YAML模块自动化调用方案探讨
2025-06-03 22:11:08作者:温艾琴Wonderful
在安全测试领域,自动化工具链的整合一直是提高效率的关键。本文将以Yaklang/Yakit项目为背景,深入探讨如何实现Nuclei YAML模块的自动化调用机制,以及相关技术实现思路。
背景与需求分析
Yakit作为一款集成化安全测试平台,其插件系统支持多种安全工具的联动。当前用户反馈的核心需求是:在完成空间搜索后,能够自动对筛选出的目标执行指定的Nuclei YAML检测模块,实现从资产发现到风险检测的自动化闭环。
这种需求在安全评估和自动化巡检场景中尤为常见。传统工作流需要人工复制目标信息到Nuclei工具中执行,不仅效率低下,还容易出错。
技术实现难点
-
模块选择机制:需要解决如何在脚本中动态指定Nuclei模板的问题。不同于命令行直接指定模板路径,在GUI界面中用户期望通过勾选方式选择多个检测模块。
-
目标传递机制:扫描结果需要自动转化为Nuclei的输入目标,保持目标格式的兼容性。
-
执行控制:需要合理控制并发量和超时机制,避免对目标系统造成过大压力。
解决方案设计
方案一:插件联动增强
通过扩展Yakit的插件联动API,可以实现:
- 在空间搜索插件中增加"Nuclei扫描"动作按钮
- 将当前选中目标自动填充到Nuclei插件的目标输入框
- 保持用户界面选择模板的交互方式
关键技术点:
// 伪代码示例
targets = GetSelectedTargetsFromSpaceEngine()
nucleiPlugin = GetPlugin("official/nuclei")
nucleiPlugin.SetTargets(targets)
nucleiPlugin.StartScan()
方案二:脚本化调用
对于高级用户,可以通过Yak脚本直接调用Nuclei引擎:
targets = ["http://example.com", "192.168.1.1"]
templates = ["cves/2023/CVE-2023-1234.yaml", "misconfigs/nginx.yaml"]
nuclei.Scan(targets, templates,
concurrency: 20,
timeout: 30,
severity: ["high", "critical"]
)
实现建议
-
模板索引机制:建议建立Nuclei模板的索引数据库,支持通过分类、严重级别等维度快速筛选模板。
-
结果关联:扫描结果应与原始目标信息保持关联,便于后续分析。
-
性能优化:对于大规模目标,建议实现分批扫描和结果实时展示机制。
总结
实现Nuclei YAML模块的自动化调用需要从用户交互、目标传递、执行控制等多个维度进行设计。Yaklang/Yakit的插件体系为这种深度集成提供了良好基础,开发者可以通过扩展插件API或提供更丰富的脚本接口来满足这类自动化需求。未来还可以考虑加入模板依赖分析、智能调度等高级特性,进一步提升自动化检测的效率和质量。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178