GraphScope中路径元素属性提取的优化实现
2025-06-24 19:56:11作者:凤尚柏Louis
在GraphScope图计算引擎的最新版本中,团队对路径遍历操作进行了重要优化,特别是在获取路径中元素的属性方面。这项改进使得用户能够更灵活地处理路径查询结果,为复杂图分析提供了更强大的支持。
背景与需求
在图数据库查询中,路径遍历是一种常见操作。用户经常需要沿着特定模式在图中移动,并收集路径上各元素的属性信息。传统实现中,获取路径元素的属性往往需要额外的处理步骤,这影响了查询效率。
GraphScope团队识别到这一痛点,决定在基于GOpt的新一代引擎中增强路径元素属性提取功能。核心目标是让用户能够直接在一次操作中获取路径上顶点和边的属性,而无需额外的处理步骤。
技术实现
新功能支持多种属性提取方式,包括:
- 值提取(values)操作:可以直接获取路径中顶点或边的特定属性值
- 值映射(valueMap)操作:可以获取路径元素属性的键值对映射
具体实现上,引擎通过以下方式支持这些操作:
// 获取路径中所有顶点的id属性
g.V().both("1..3","knows").with('RESULT_OPT', 'ALL_V').values("id")
// 获取路径中所有顶点和边的id属性(需确保id属性在两者中都存在)
g.V().both("1..3","knows").with('RESULT_OPT', 'ALL_V_E').values("id")
// 获取路径中所有顶点的id属性映射
g.V().both("1..3","knows").with('RESULT_OPT', 'ALL_V').valueMap("id")
// 获取路径中所有顶点和边的id属性映射
g.V().both("1..3","knows").with('RESULT_OPT', 'ALL_V_E').valueMap("id")
实现原理
在底层实现上,GraphScope团队对查询优化器(GOpt)进行了扩展:
- 路径元素识别:优化器能够识别路径中的顶点和边元素
- 属性访问优化:对于路径中的每个元素,优化器会生成高效的属性访问计划
- 结果组装:根据用户指定的结果选项(ALL_V或ALL_V_E),正确组装顶点和边的属性
特别值得注意的是,当使用ALL_V_E选项时,系统会验证请求的属性是否确实存在于顶点和边的模式中,确保查询的合法性。
性能考量
这种集成式的属性提取方式相比传统分步处理有几个优势:
- 减少中间结果:避免了生成完整路径对象后再提取属性的开销
- 优化数据访问:可以批量获取属性,减少IO操作
- 并行处理:属性提取可以与其他操作并行执行
应用场景
这项优化特别适用于以下场景:
- 路径分析:分析社交网络中信息传播路径上各节点的属性
- 模式检测:检测特定模式时同时获取相关元素的属性
- 图遍历:在遍历过程中收集顶点和边的关键信息
总结
GraphScope在路径元素属性提取方面的优化,显著提升了图查询的效率和表达能力。用户现在可以更自然地表达复杂的路径查询需求,同时享受优化后的执行性能。这一改进是GraphScope持续优化图查询体验的重要一步,为更复杂的图分析任务奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1