Prometheus.NET 使用教程
1. 项目介绍
Prometheus.NET 是一个用于在 .NET 应用程序中集成 Prometheus 指标的开源库。Prometheus 是一个开源的监控和报警工具包,广泛用于云原生应用的监控。Prometheus.NET 允许开发者轻松地将自定义指标集成到 .NET 应用程序中,并通过 Prometheus 进行收集和展示。
该库支持多种 .NET 运行时,包括 .NET Framework 4.6.2 和 .NET 6.0 及以上版本。它提供了丰富的内置指标收集集成,特别是针对 ASP.NET Core 应用,能够自动收集 HTTP 请求、gRPC 请求、健康检查状态等指标。
2. 项目快速启动
2.1 安装
首先,通过 NuGet 安装 prometheus-net
包:
dotnet add package prometheus-net
如果你使用的是 ASP.NET Core,还需要安装 prometheus-net.AspNetCore
包:
dotnet add package prometheus-net.AspNetCore
2.2 配置
在 ASP.NET Core 应用程序中,配置 Prometheus 指标收集和暴露。在 Startup.cs
文件中进行如下配置:
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
// 使用 HTTP 指标中间件
app.UseHttpMetrics();
// 使用 Prometheus 中间件
app.UseMetricServer();
app.UseRouting();
app.UseEndpoints(endpoints =>
{
endpoints.MapControllers();
});
}
2.3 收集自定义指标
在代码中定义和收集自定义指标:
using Prometheus;
public class MyService
{
private static readonly Counter ProcessedJobCount = Metrics
.CreateCounter("myapp_jobs_processed_total", "Number of processed jobs.");
public void ProcessJob()
{
// 处理作业的逻辑
// ...
// 增加计数器
ProcessedJobCount.Inc();
}
}
2.4 运行应用
启动应用程序后,访问 /metrics
路径即可查看暴露的指标数据。
3. 应用案例和最佳实践
3.1 应用案例
3.1.1 ASP.NET Core 应用监控
在 ASP.NET Core 应用中,Prometheus.NET 可以自动收集 HTTP 请求的指标,如请求数量、请求持续时间等。通过 Grafana 等工具,可以实时监控应用的性能和健康状态。
3.1.2 自定义指标收集
在业务逻辑中,可以通过定义自定义指标来监控关键业务操作的执行情况。例如,记录某个操作的成功和失败次数,或者记录某个操作的执行时间。
3.2 最佳实践
3.2.1 指标命名规范
遵循 Prometheus 的指标命名规范,使用下划线分隔单词,避免使用大写字母和特殊字符。
3.2.2 标签的使用
合理使用标签(Labels)来区分不同的指标实例。例如,使用 HTTP 请求方法作为标签来区分不同类型的请求。
3.2.3 性能考虑
在收集高频指标时,注意性能开销。可以通过批量处理和异步操作来减少对应用性能的影响。
4. 典型生态项目
4.1 Grafana
Grafana 是一个开源的指标数据可视化和监控平台,可以与 Prometheus 无缝集成。通过 Grafana,可以创建丰富的仪表盘来展示 Prometheus 收集的指标数据。
4.2 Prometheus
Prometheus 是一个开源的监控和报警工具包,能够从各种来源收集指标数据,并提供强大的查询和报警功能。Prometheus.NET 收集的指标数据可以直接被 Prometheus 服务器抓取。
4.3 AlertManager
AlertManager 是 Prometheus 生态中的一个组件,用于处理报警。当 Prometheus 检测到异常指标时,可以通过 AlertManager 发送报警通知。
通过这些生态项目的配合,可以构建一个完整的应用监控和报警系统。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0258PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









