Optuna中实现分类变量的Thompson采样方法探索
背景介绍
在机器学习超参数优化领域,Optuna是一个广受欢迎的开源框架。在实际应用中,我们经常会遇到分类变量(categorical variables)的优化问题。传统的采样方法在处理这类变量时可能存在一些不足,特别是当某些类别具有潜在的良好表现但不确定性较大时。
Thompson采样原理
Thompson采样是一种基于贝叶斯思想的随机采样策略,它通过维护每个选项的概率分布来进行决策。基本思想是:
- 为每个可能的选项建立概率模型
- 从当前的后验分布中采样一组参数
- 选择在当前采样参数下表现最好的选项
这种方法特别适合处理"探索-利用"(exploration-exploitation)的权衡问题,能够有效地平衡对未知选项的探索和对已知优秀选项的利用。
Optuna中的实现方案
在Optuna框架中,可以通过继承BaseSampler类来实现Thompson采样器。具体实现要点包括:
-
初始化阶段:设置burn_in参数,在初始阶段对各个类别进行顺序采样,建立初步的评估基准
-
数据维护:使用字典结构cat_dict记录每个类别的目标函数值历史,其中:
- 键:类别选项
- 值:该类别对应的目标函数值列表
-
采样逻辑:
- 对于分类变量,基于历史数据计算每个类别的后验分布
- 从后验分布中采样,选择当前最优类别
- 对于非分类变量,回退到基础采样器处理
实际应用效果
在一个测试场景中,比较了基础采样器和Thompson采样器的表现:
- 测试设置包含四个高斯分布类别:
- 类别a:均值第二高但分布最宽,可能达到最高值
- 类别b:均值最高但分布较窄
- 类别c/d:作为对照,分布更窄
结果显示:
- 基础采样器过度采样类别b,难以发现类别a的优质波动
- Thompson采样器能够更合理地分配采样资源,成功捕捉到类别a的有利波动
当前实现限制
-
单一分类变量:目前仅支持单个分类变量的场景,虽然扩展到多变量理论上可行,但需要考虑嵌套分类等复杂情况
-
集成方式:当前使用自定义条件语句更新cat_dict,更优雅的方式应该是利用Optuna提供的before_trial/after_trial回调机制
-
参数设置:burn_in参数需要合理设置,过短可能导致初始估计不准确,过长则影响优化效率
未来发展方向
-
多变量支持:扩展算法以处理多个相关分类变量的联合优化
-
自适应burn_in:开发自动确定burn_in周期的方法,可能基于类别间的方差分析
-
深度集成:更好地利用Optuna的回调系统,提高代码的模块化和可维护性
-
理论分析:进一步研究Thompson采样在超参数优化中的收敛性和效率保证
这种采样策略的引入为Optuna用户提供了处理分类变量的新工具,特别是在存在不确定性较大选项的场景下,能够更有效地进行探索和优化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00