Cogitator:Python链式思维提示工具包最佳实践
2025-05-20 21:29:20作者:何举烈Damon
1. 项目介绍
Cogitator 是一个 Python 工具包,用于实验和操作大型语言模型(LLMs)中的链式思维(CoT)提示方法。CoT 提示通过引导模型在得出最终答案之前生成中间推理步骤,从而提高 LLM 在复杂任务(如问答、推理和问题解决)上的性能。此外,它还可以通过提供对模型推理过程的见解来增强 LLM 的可解释性。Cogitator 旨在简化流行 CoT 策略和框架的使用,便于研究和将它们集成到 AI 应用程序中。
2. 项目快速启动
首先,确保您的环境中已安装 Python。以下步骤将帮助您快速启动 Cogitator 项目:
# 克隆项目
git clone https://github.com/habedi/cogitator.git
cd cogitator
# 设置 Python 环境
pip install poetry
poetry install --with dev
# 运行测试(可选)
poetry run pytest
安装完成后,您可以开始使用 Cogitator 提供的 API 进行链式思维提示的实验。
3. 应用案例和最佳实践
以下是一个使用 Cogitator 的简单案例,展示了如何使用 Self-Consistency CoT 策略:
import logging
from cogitator import SelfConsistency, OllamaLLM
# 配置日志(可选,但有助于调试)
logging.basicConfig(level=logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
# 初始化 LLM(使用 Ollama)
try:
llm = OllamaLLM(model="gemma3:4b")
except Exception as e:
print(f"初始化 Ollama LLM 错误:{e}")
print("请确保 Ollama 正在运行并且模型已拉取。")
exit(1)
# 选择 CoT 策略(在此案例中为 Self-Consistency)
sc_strategy = SelfConsistency(llm, n_samples=5, temperature=0.7)
# 定义提示(带有基本 CoT 触发器)
question = "一个球拍和球总共花费 1.10 美元。球拍比球贵 1.00 美元。球的价格是多少?"
prompt = f"Q: {question}\nA: 让我们一步步思考。"
# 运行 CoT 提示
print(f"\n问题:{question}")
print("运行 Self-Consistency CoT...")
final_answer = sc_strategy.run(prompt)
print(f"\nCogitator 的答案(Self-Consistency):{final_answer}")
在此代码中,我们首先配置了日志记录器,然后初始化了一个 Ollama LLM 实例,并选择了一个 Self-Consistency CoT 策略。之后,我们定义了一个问题提示,并通过 CoT 策略运行该提示以获取答案。
4. 典型生态项目
Cogitator 的生态系统中,您可以找到以下典型项目:
- benches: 一个可定制的基准测试框架,用于评估不同 CoT 策略在各种数据集(如 GSM8K 和 StrategyQA)上的性能。
- examples: 包含使用 Cogitator 的不同 CoT 策略的示例代码。
- tests: 用于确保 Cogitator 正确实现的测试用例。
通过这些项目,您可以更好地理解和运用 Cogitator,以及它在链式思维提示方面的强大功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
248
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885