Requests-OAuth 技术文档
本文档将详细介绍如何安装、使用以及通过项目API来操作 requests-oauth 插件,这是一个为 Python 的 requests 库添加 OAuth v1.0 支持的插件。
1. 安装指南
安装 requests-oauth 非常简单,只需使用以下命令:
pip install requests-oauth
2. 项目的使用说明
首先,你需要导入 OAuthHook 模块。该模块可以通过传递五个参数来进行初始化:access_token、access_token_secret、consumer_key、consumer_secret 以及 header_auth。前两个参数是可选的,这样你就可以从 API 服务中获取它们。
有两种初始化钩子的方式:
- 方法一:
oauth_hook = OAuthHook(access_token, access_token_secret, consumer_key, consumer_secret, header_auth)
header_auth 参数是一个布尔值,如果你设置为 True,则会使用授权头进行认证。如果你的 API 支持此种认证方式,这是你应该使用的,并且是 OAuth 规范推荐的认证方法(RFC 5849)。默认情况下,header_auth 设置为 False,意味着将使用 URL 编码的认证方式,这是最为广泛支持的认证系统。
- 方法二:
如果你总是使用相同的 consumer_key 和 consumer_secret,你可以将它们固定下来,这样你只需要为设置钩子传递令牌参数:
OAuthHook.consumer_key = consumer_key
OAuthHook.consumer_secret = consumer_secret
oauth_hook = OAuthHook(access_token, access_token_secret, header_auth=True)
然后,你需要将钩子传递给 python-requests,最好是通过一个会话来做,这样你就不必每次都这样做:
client = requests.session(hooks={'pre_request': oauth_hook})
现在你得到的是一个可以像平常使用 requests API 一样的 Python-requests 客户端。以下是一个 GET 请求的示例:
response = client.get('http://api.twitter.com/1/account/rate_limit_status.json')
results = json.loads(response.content)
以及一个 POST 请求的示例:
response = client.post('http://api.twitter.com/1/statuses/update.json', {'status': "Yay! It works!", 'wrap_links': True})
3. 项目API使用文档
requests-oauth 的核心是 OAuthHook 类,以下是它的基本用法:
-
OAuthHook(access_token, access_token_secret, consumer_key, consumer_secret, header_auth=False): 创建一个 OAuth 认证钩子。 -
OAuthHook.consumer_key和OAuthHook.consumer_secret: 可以设置为默认值,这样在创建钩子时就不需要每次都提供。 -
会话中使用钩子:通过
requests.session创建一个会话,并将钩子添加到会话的hooks字典中。
4. 项目安装方式
项目的安装方式已在“安装指南”部分提供,通过 pip 命令即可轻松安装。
以上就是关于 requests-oauth 插件的技术文档,通过本文档,用户应能顺利安装并使用该插件进行 OAuth 认证。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00