文本挖掘与NLP基础:从分词到Zipf定律分析
2025-06-04 06:42:05作者:尤峻淳Whitney
引言
在数据科学领域,文本数据是最常见也最具挑战性的数据类型之一。本文将基于NLTK工具包,深入探讨文本挖掘和自然语言处理(NLP)的基础技术,包括分词、词频分析和Zipf定律等核心概念。
环境准备
在开始文本分析前,我们需要配置适当的环境:
-
安装必要的Python库:
- NumPy:用于高效数值计算
- NLTK:自然语言处理工具包
- Tkinter:图形用户界面支持
-
下载NLTK数据包,包含语料库、词性标注器、分块器等资源
import nltk
nltk.download('all') # 下载所有NLTK数据资源
文本预处理基础
1. 句子分割
将段落分割成句子是文本处理的第一步。NLTK的sent_tokenize
函数能智能处理各种复杂情况:
example = '''Good bagels cost $2.88 in N.Y.C. Hey Prof. Ipeirotis, please buy me two of them.
Thanks.
PS: You have a Ph.D. you can handle this, right?'''
print(nltk.sent_tokenize(example))
2. 词语切分
词语切分(tokenization)比简单的空格分割复杂得多,需要考虑缩写、货币符号等情况:
import string
for sentence in nltk.sent_tokenize(example):
tokens = nltk.word_tokenize(sentence)
# 只保留字母组成的词,并转为小写
words = [w.lower() for w in tokens if w not in string.punctuation]
print("处理后的词语:", words)
词频分析与Zipf定律
1. 基本词频统计
以达尔文的《物种起源》为例,我们可以进行词频分析:
content = open('/data/origin-of-species.txt', 'r').read()
tokens = nltk.word_tokenize(content)
fdist = nltk.FreqDist(tokens)
print("总词数:", len(tokens))
print("独特词数:", len(fdist))
print("'species'出现次数:", fdist["species"])
2. Zipf定律可视化
Zipf定律指出,在自然语言文本中,词频与排名呈幂律关系:
# 绘制前100个高频词的频率分布
fdist.plot(100, cumulative=False)
fdist.plot(100, cumulative=True)
分析发现:
- 前100个高频词占文本总量的50%以上
- 2666个词(占独特词数的34.7%)只出现一次(称为hapaxes)
3. 停用词处理
停用词(如"the", "and")通常不携带关键信息,可以过滤:
from nltk.corpus import stopwords
stopwords = stopwords.words('english')
stopwords.extend(['one', 'may', 'would']) # 扩展停用词表
def get_most_frequent_words(text, top):
content = [w.lower() for w in text
if w.lower() not in stopwords and w.isalpha()]
return nltk.FreqDist(content).most_common(top)
print("过滤停用词后的高频词:", get_most_frequent_words(tokens, 10))
文本分布分析
1. 分布图(Dispersion Plot)
分布图展示关键词在文本中的位置分布:
text = nltk.Text(tokens)
text.dispersion_plot(["species", "natural", "selection", "evolution"])
2. 实践练习
NLTK内置了多个经典文本,可用于练习:
- text1: 《白鲸记》
- text2: 《理智与情感》
- text3: 《创世纪》
- text4: 美国总统就职演说
- text5: 聊天语料
关键概念总结
- 词频分布:统计文本中词语出现频率的基本方法
- 分词技术:将文本分割为有意义的单元,比简单空格分割更复杂
- Zipf定律:解释自然语言中词频分布的幂律现象
- 停用词过滤:移除高频但低信息量的词语
- 分布分析:研究词语在文本中的位置分布特征
通过掌握这些基础技术,我们可以为更高级的文本挖掘和自然语言处理任务奠定坚实基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0