OVH AI 训练示例项目教程
1. 项目介绍
OVH AI 训练示例项目是一个开源项目,旨在提供使用 OVHcloud AI 解决方案的示例和资源。该项目包含了多种形式的示例,如 Python 文件、Jupyter Notebook、Dockerfile 等,涵盖了 AI Notebooks、AI Training 和 AI Apps 的使用。通过这些示例,开发者可以快速上手并了解如何使用 OVHcloud 的 AI 服务。
2. 项目快速启动
2.1 克隆项目
首先,克隆 OVH AI 训练示例项目到本地:
git clone https://github.com/ovh/ai-training-examples.git
cd ai-training-examples
2.2 运行示例
以下是一个简单的示例,展示如何运行一个 Jupyter Notebook 示例:
# 进入 notebooks 目录
cd notebooks
# 启动 Jupyter Notebook
jupyter notebook
在浏览器中打开 Jupyter Notebook 界面,选择一个示例 Notebook 并运行。
3. 应用案例和最佳实践
3.1 图像分类
在 notebooks/computer-vision/image-classification/tensorflow/resnet50 目录下,有一个使用 ResNet50 进行图像分类的示例。该示例展示了如何使用 TensorFlow 进行迁移学习,并使用 OVHcloud AI 服务进行模型训练。
3.2 自然语言处理
在 notebooks/natural-language-processing/text-classification/hugging-face 目录下,有使用 Hugging Face 进行情感分析的示例。该示例展示了如何使用预训练模型进行文本分类,并使用 OVHcloud AI 服务进行模型部署。
4. 典型生态项目
4.1 FastAPI 应用
在 apps/fastapi 目录下,有一个使用 FastAPI 构建的垃圾邮件分类 API 示例。该示例展示了如何使用 FastAPI 构建一个简单的 RESTful API,并使用 OVHcloud AI 服务进行模型部署。
4.2 Flask 应用
在 apps/flask 目录下,有多个使用 Flask 构建的应用示例,如对象检测和情感分析应用。这些示例展示了如何使用 Flask 构建 Web 应用,并使用 OVHcloud AI 服务进行模型集成。
4.3 Streamlit 应用
在 apps/streamlit 目录下,有多个使用 Streamlit 构建的应用示例,如音频分类和数据分析应用。这些示例展示了如何使用 Streamlit 快速构建交互式 Web 应用,并使用 OVHcloud AI 服务进行数据处理和模型展示。
通过这些示例,开发者可以快速了解如何使用 OVHcloud AI 服务构建各种 AI 应用,并将其部署到生产环境中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00